51nod-1298 圆与三角形(计算几何超详解)

题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1298

给出圆的圆心和半径,以及三角形的三个顶点,问圆同三角形是否相交。相交输出"Yes",否则输出"No"。(三角形的面积大于0)。

Input第1行:一个数T,表示输入的测试数量(1 <= T <= 10000),之后每4行用来描述一组测试数据。
4-1:三个数,前两个数为圆心的坐标xc, yc,第3个数为圆的半径R。(-3000 <= xc, yc <= 3000, 1 <= R <= 3000) 
4-2:2个数,三角形第1个点的坐标。 
4-3:2个数,三角形第2个点的坐标。 
4-4:2个数,三角形第3个点的坐标。(-3000 <= xi, yi <= 3000)Output共T行,对于每组输入数据,相交输出"Yes",否则输出"No"。Sample Input

2
0 0 10
10 0
15 0
15 5
0 0 10
0 0
5 0
5 5

Sample Output

Yes
No

基础知识回顾:点到直线距离公式:

余弦定理:

分析:

对于给定的三角形和圆,我们考虑相交的情况:

① 三角形有一点在圆内,有一点在圆外。

② 三角形有一点在圆上。

③三角形三点都在圆外,但有一条边与圆相交或相切。

前两种情况比较好写,只需要判断三角形三个端点到圆心的距离与半径的关系即可。

对于第三种情况,我们可以先判断圆心到三角形三条边的距离,如果有一条边到圆心的直线距离小于等于半径,我们进而去判断圆心到这条边所在直线的垂足是否在这条边上。如何去判断呢?

我们可以利用余弦定理,只要圆心与这条边的两个端点所成的角均为锐角(即cosα>0),那么垂足必然落在这条边上。

以下是AC代码:

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
struct triangle//用结构体来存三角形三点的坐标
{
    double x[3],y[3];
};
double x,y,r;
triangle a;
//计算(x1,y1)与(x2,y2)之间的距离的平方
double point_dist(double x1,double y1,double x2,double y2)
{
    return (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
}
//计算圆心(x,y)到直线Ax+By+C=0的距离的平方
double line_dist(double A,double B,double C)
{
    double ans = ( (A*x + B*y + C) * (A*x + B*y + C) ) / (A*A + B*B);
    return ans > 0 ? ans : -ans;
}
double f(double a,double b,double c)//余弦定理
{
    return (b + c - a) / (2.0 * sqrt(b * c));
}
int main()
{
    int i,j,t;
    cin>>t;
    while(t--)
    {
        //Input
        scanf("%lf%lf%lf",&x,&y,&r);
        for(i = 0;i < 3; i++)
        scanf("%lf%lf",&a.x[i],&a.y[i]);
        //Solve
        double dis1[3],dis2[3],dis3[3];
        //dis1存放三角形三点到圆心距离的平方
        dis1[0] = point_dist(x,y,a.x[0],a.y[0]);
        dis1[1] = point_dist(x,y,a.x[1],a.y[1]);
        dis1[2] = point_dist(x,y,a.x[2],a.y[2]);
        //dis2存放三角形三条边长的平方
        dis2[0] = point_dist(a.x[0],a.y[0],a.x[1],a.y[1]);
        dis2[1] = point_dist(a.x[1],a.y[1],a.x[2],a.y[2]);
        dis2[2] = point_dist(a.x[2],a.y[2],a.x[0],a.y[0]);
        //dis3存放三角形三条边到圆心的直线距离的平方
        dis3[0] = line_dist(a.y[0]-a.y[1],a.x[1]-a.x[0],(a.x[0]-a.x[1])*a.y[0]+(a.y[1]-a.y[0])*a.x[0]);
        dis3[1] = line_dist(a.y[1]-a.y[2],a.x[2]-a.x[1],(a.x[1]-a.x[2])*a.y[1]+(a.y[2]-a.y[1])*a.x[1]);
        dis3[2] = line_dist(a.y[2]-a.y[0],a.x[0]-a.x[2],(a.x[2]-a.x[0])*a.y[2]+(a.y[0]-a.y[2])*a.x[2]);
        double t1,t2;
        t1 = min(dis1[0],min(dis1[1],dis1[2]));//t1为三点到圆心距离最小的那个
        t2 = max(dis1[0],max(dis1[1],dis1[2]));//t2为三点到圆心距离最大的那个
        if(t1 <= r*r &&t2 >= r*r)//一点在圆内,一点在圆外或有一点在圆上
        cout<<"Yes"<<endl;
        else if(t1 > r*r)//三点都在圆外
        {
            if(dis3[0] <= r*r)//dis3[0]是由点1和点2连接起来的边到圆心的距离
            {
                if(f(dis1[0],dis2[0],dis1[1]) > 0 && f(dis1[1],dis2[0],dis1[0]) > 0)
                {
                    cout<<"Yes"<<endl;
                    continue;
                }
            }
            if(dis3[1] <= r*r)//dis3[1]是由点2和点3连接起来的边到圆心的距离
            {
                if(f(dis1[1],dis2[1],dis1[2]) > 0 && f(dis1[2],dis2[1],dis1[1]) > 0)
                {
                    cout<<"Yes"<<endl;
                    continue;
                }
            }
            if(dis3[2] <= r*r)//dis3[2]是由点1和点2连接起来的边到圆心的距离
            {
                if(f(dis1[0],dis2[2],dis1[2]) > 0 && f(dis1[2],dis2[2],dis1[0]) > 0)
                {
                    cout<<"Yes"<<endl;
                    continue;
                }
            }
            cout<<"No"<<endl;
        }
        else
        cout<<"No"<<endl;
    }
    return 0;
}

代码需注意的几点:

① 计算距离时不要用sqrt函数,会导致计算误差WA

② 已知三角形一条边的两端点(x1,y1)(x2,y2),我们将这条边的直线方程斜截式y=kx+b转换为一般式ax+by+c=0所得结果为 (y1-y2)x+(x2-x1)y+(x1-x2)y1+(y2-y1)x1=0,这也是给dis3数组赋值的依据。



原文地址:https://www.cnblogs.com/chdforestsea/p/9795342.html

时间: 2024-10-12 20:58:46

51nod-1298 圆与三角形(计算几何超详解)的相关文章

51nod 1298 圆与三角形 (计算几何)

http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1298 求出圆心到三条线段的最短距离,然后判断是否有顶点在圆外,就把全部情况举出来. 1 #include <cstdio> 2 #include <cstring> 3 #include <cmath> 4 #include <algorithm> 5 using namespace std; 6 const double PI =

[51nod]1298 圆与三角形

1298 圆与三角形 题目来源: HackerRank 给出圆的圆心和半径,以及三角形的三个顶点,问圆同三角形是否相交.相交输出"Yes",否则输出"No".(三角形的面积大于0). Input 第1行:一个数T,表示输入的测试数量(1 <= T <= 10000),之后每4行用来描述一组测试数据. 4-1:三个数,前两个数为圆心的坐标xc, yc,第3个数为圆的半径R.(-3000 <= xc, yc <= 3000, 1 <= R 

51 Nod 1298 圆与三角形(计算几何)

题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1298 题目: 1298 圆与三角形 给出圆的圆心和半径,以及三角形的三个顶点,问圆同三角形是否相交.相交输出"Yes",否则输出"No".(三角形的面积大于0). Input 第1行:一个数T,表示输入的测试数量(1 <= T <= 10000),之后每4行用来描述一组测试数据. 4-1:三个数,前两个数为圆心的坐标x

POJ 1659 Frogs&#39; Neighborhood(可图性判定—Havel-Hakimi定理)【超详解】

Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9897   Accepted: 4137   Special Judge Description 未名湖附近共有N个大小湖泊L1, L2, ..., Ln(其中包括未名湖),每个湖泊Li里住着一只青蛙Fi(1 ≤ i ≤ N).如果湖泊Li和Lj之间有水路相连,则青蛙Fi和Fj互称为邻居.现在已知每只青蛙的邻居数目x1, x2, ..

CentOS6启动过程超详解分析

CentOS 6 开机流程--linux由kernel和rootfs组成.kernel负责进程管理.内存管理.网络管理.驱动程序.文件系统.安全等;rootfs由程序和glibc组成,完善操作系统的功能.同时linux内核的特点是模块化,通过对模块装载卸载可以对内核功能自定义.linux内核文件:/boot/vmlinuz-2.6.32-696.el6.x86_64 整体的流程 BIOS/开机自检 MBR引导(Boot Loader) 启动内核 启动第一个进程init 一.BIOS/开机自检 1

51nod 1298 园与三角形

给出圆的圆心和半径,以及三角形的三个顶点,问圆同三角形是否相交.相交输出"Yes",否则输出"No".(三角形的面积大于0). Input 第1行:一个数T,表示输入的测试数量(1 <= T <= 10000),之后每4行用来描述一组测试数据. 4-1:三个数,前两个数为圆心的坐标xc, yc,第3个数为圆的半径R.(-3000 <= xc, yc <= 3000, 1 <= R <= 3000) 4-2:2个数,三角形第1个点的

1298 圆与三角形

给出圆的圆心和半径,以及三角形的三个顶点,问圆同三角形是否相交.相交输出"Yes",否则输出"No".(三角形的面积大于0). Input 第1行:一个数T,表示输入的测试数量(1 <= T <= 10000),之后每4行用来描述一组测试数据. 4-1:三个数,前两个数为圆心的坐标xc, yc,第3个数为圆的半径R.(-3000 <= xc, yc <= 3000, 1 <= R <= 3000) 4-2:2个数,三角形第1个点的

高斯消元法(Gauss Elimination)【超详解&amp;模板】

高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵.高斯消元法的原理是:若用初等行变换将增广矩阵 化为 ,则AX = B与CX = D是同解方程组. 所以我们可以用初等行变换把增广矩阵转换为行阶梯阵,然后回代求出方程的解. 1.线性方程组 1)构造增广矩阵,即系数矩阵A增加上常数向量b(A|b) 2)通过以交换行.某行乘以非负常数和两行相加这三种初等变化将原系统转化为更简单的三角形式(triangular form) 注:这里的初等变化可以通过

海量数据处理算法总结【超详解】

1. Bloom Filter [Bloom Filter]Bloom Filter(BF)是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合.它是一个判断元素是否存在集合的快速的概率算法.Bloom Filter有可能会出现错误判断,但不会漏掉判断.也就是Bloom Filter判断元素不再集合,那肯定不在.如果判断元素存在集合中,有一定的概率判断错误.因此,Bloom Filter不适合那些“零错误”的应用场合. 而在能容忍低错误率的应用场合