P2513 [HAOI2009]逆序对数列

P2513 [HAOI2009]逆序对数列

题目描述
对于一个数列{ai},如果有iaj,那么我们称ai与aj为一对逆序对数。若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数。那么逆序对数为k的这样自然数数列到底有多少个?



错误日志: 没想対, 菜是原罪, 最近状态不佳


Solution

在一段 \(1 - (i - 1)\) 的排列中加入 \(i\) 你可以控制 \(i\) 插入的位置, 给这个排列的逆序对任意加上 \(1 - (i - 1)\) 对(从最右到最左插入)
于是想到状态 \(dp[i][j]\) 表示为考虑 \(1 - i\) 的排列, 逆序对数为 \(j\) 的方案数
然后写出状态转移方程:\[dp[i][j] = \sum_{k = 0}^{min(j, i - 1)}dp[i - 1][j - k]\]
这样枚举 \(k\), 复杂度为 \(O(nk^{2})\) 会炸
观察这个式子, 令 \(t = j - k\) ,换一下元, 交换 \(sum\) 的上下边界, 我们可以得到:\[dp[i][j] = \sum_{t = max(0, j - i +1)}^{j}dp[i - 1][t]\]
发现 \(t\) 的范围为一段可以维护和的区间, 前缀和维护即可

Code

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
#define LL long long
#define REP(i, x, y) for(int i = (x);i <= (y);i++)
using namespace std;
int RD(){
    int out = 0,flag = 1;char c = getchar();
    while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
    while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
    return flag * out;
    }
const int maxn = 2019, M = 10000;
int num, K;
int dp[maxn][maxn];
int main(){
    num = RD(), K = RD();
    dp[1][0] = 1;
    REP(i, 2, num){
        int sum = 0;
        REP(j, 0, K){
            sum = (sum + dp[i - 1][j]) % M;
            if(j - i + 1 > 0)sum = (sum - dp[i - 1][j - i] + M) % M;
            dp[i][j] = sum;
            }
        }
    printf("%d\n", dp[num][K]);
    return 0;
    }

原文地址:https://www.cnblogs.com/Tony-Double-Sky/p/9860818.html

时间: 2024-10-12 05:15:07

P2513 [HAOI2009]逆序对数列的相关文章

洛谷P2513 [HAOI2009]逆序对数列

P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? 输入输出格式 输入格式: 第一行为两个整数n,k. 输出格式: 写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果. 输入输出样例 输入样例#1: 4 1 输出样例#1: 3 说明 样例说明:

2431: [HAOI2009]逆序对数列

2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 954  Solved: 548[Submit][Status] Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? Input 第一行为两个整数n,k. Output 写入一个整数,

bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)

2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2312  Solved: 1330[Submit][Status][Discuss] Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? Input 第一行为两个整数n,k. Ou

BZOJ2431: [HAOI2009]逆序对数列

2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 831  Solved: 473[Submit][Status] Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? Input 第一行为两个整数n,k. Output 写入一个整数,

BZOJ-2431: [HAOI2009]逆序对数列 (傻逼递推)

2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2401  Solved: 1389[Submit][Status][Discuss] Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? Input 第一行为两个整数n,k. Ou

bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列

http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, 所以放在i+1后面的所有数都会与i+1形成逆序对 转移方程:dp[i][j]=Σ dp[i-1][j-k]  k∈[0,min(j,i-1)] 前缀和优化 朴素的DP #include<cstdio> #include<algorithm> using namespace std;

[HAOI2009]逆序对数列

题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? 输入输出格式 输入格式: 第一行为两个整数n,k. 输出格式: 写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果. 输入输出样例 输入样例#1: 4 1 输出样例#1: 3 说明 样例说明: 下列3个数列逆序对数都为1:分别是1 2

[bzoj2431][HAOI2009][逆序对数列] (dp计数)

Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? Input 第一行为两个整数n,k. Output 写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果. Sample Input 4 1 Sample Output 3 样例说明: 下列3个数列逆序对数都为1:分别是1

【bzoj2431】[HAOI2009]逆序对数列 dp

题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? 输入 第一行为两个整数n,k. 输出 写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果. 样例输入 4 1 样例输出 3 题解 dp傻*题 设f[i][j]表示1~i组成逆序对个数为j的数列的方案数,那么考虑第i个元素,它对逆序对个