机器学习中的数学:洛必达法则(能力工场小马哥)

通俗地讲,求极限的本质是分子与分母“比阶”,比谁的速度快。

就像分子分母在跑道上进行趋于0或者无穷的赛跑,我们旁观者想搞清楚他们
1.谁赢了?(极限是大于一还是小于一?)
2.他们是差不多同时撞线还是领先者领先好几个身位到达终点?(同阶还是高阶?)同时撞线差了多少?(同阶的话极限到底是几?)

但问题在于我们肉眼的判断能力有限,只知道两人的运动情况(函数在某点附近的表达式)。洛必达法则告诉我们,在一定的条件下,我们可以用放慢镜头的办法(分子分母公平降阶)判断出两者谁跑得快,快多少。每求一次导相当于镜头慢了一倍,这样慢下去,两者冲线的情况最终就越来越清晰。

当然这种放慢镜头的办法不是每次都灵的。如果因为技术原因慢镜头在冲线前后不能放(函数不存在一个可导的邻域),或者放了慢镜头后因为什么原因分辨不出来(洛必达完了极限反而不存在)或者他们中间摔倒了根本没有冲线(不是0比0或者无穷比无穷),那么再去放慢镜头也对知道比赛结果无济于事。

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

原文地址:https://www.cnblogs.com/hadoop2015/p/10199539.html

时间: 2024-10-08 13:52:15

机器学习中的数学:洛必达法则(能力工场小马哥)的相关文章

机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用

机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系[email protected] 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计

机器学习中的数学(1)-回归(regression)、梯度下降(gradient descent)

机器学习中的数学(1)-回归(regression).梯度下降(gradient descent) 版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: 上次写过一篇关于贝叶斯概率论的数学,最近时间比较紧,coding的任务比较重,不过还是抽空看了一些机器学习的书和视频,其中很推荐两个:一个是stanford的machine learning公开课,在

机器学习中的数学-回归(regression)、梯度下降(gradient descent)<1>

机器学习中的数学(1)-回归(regression).梯度下降(gradient descent) 版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: 上次写过一篇关于贝叶斯概率论的数学,最近时间比较紧,coding的任务比较重,不过还是抽空看了一些机器学习的书和视频,其中很推荐两个:一个是stanford的machine learning公开课,在

机器学习中的数学(4)-线性判别分析(LDA), 主成分分析(PCA)

机器学习中的数学(4)-线性判别分析(LDA), 主成分分析(PCA) 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系[email protected] 前言: 第二篇的文章中谈到,和部门老大一宁出去outing的时候,他给了我相当多的机器学习的建议,里面涉及到很多的算法的意义.学习方法等等.一宁上次给我提到,如果学习分类算法,最好从线性的入手,线性分类器最简单的就是

机器学习中的数学(2)-线性回归,偏差、方差权衡

机器学习中的数学(2)-线性回归,偏差.方差权衡 版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任.如果有问题,请联系作者 [email protected] 前言: 距离上次发文章,也快有半个月的时间了,这半个月的时间里又在学习机器学习的道路上摸索着前进,积累了一点心得,以后会慢慢的写写这些心得.写文章是促进自己对知识认识的一个好方法,看书的时候往往不是非

(转)机器学习中的数学(1)-回归(regression)、梯度下降(gradient descent)

版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: 上次写过一篇关于贝叶斯概率论的数学,最近时间比较紧,coding的任务比较重,不过还是抽空看了一些机器学习的书和视频,其中很推荐两个:一个是stanford的machine learning公开课,在verycd可下载,可惜没有翻译.不过还是可以看.另外一个是prml-pattern recogni

机器学习中的数学:线性代数之矩阵(能力工场小马哥)

我开始以为矩阵是为了把线性方程组的系数抽取出来,方便方程组化简和求解,后来发现矩阵的用处不止如此,不然就不会写一本书了. 矩阵可以方便的用来表示线性空间,一个简单的二维数阵,就可以表示成n维线性空间. 一个毫无意义的有序数阵,我们赋予它意义,他就可以表示成一个空间.那为什么要这么做呢?这是因为矩阵的运算可以表示线性空间的变换.以向量举例,我们求两个向量相加,可以让(x1,y1)和(x2,y2)相加,而不必真的在图上画出来这个相加后的向量.到三维空间我们就画不出来了,因为二维空间中的向量不能表示三

(转)机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用

版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系[email protected] 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有

机器学习中的数学-强大的矩阵奇异值分解(SVD)及其应用《5》

版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系[email protected] 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有