如何使用opencv自带工具训练人脸检测分类器

如何使用opencv自带工具训练人脸检测分类器的相关文章

基于Haar特征的Adaboost级联人脸检测分类器

基于Haar特征的Adaboost级联人脸检测分类器,简称haar分类器.通过这个算法的名字,我们可以看到这个算法其实包含了几个关键点:Haar特征.Adaboost.级联.理解了这三个词对该算法基本就掌握了. 1        算法要点 Haar分类器 = Haar-like特征 + 积分图方法 + AdaBoost +级联: Haar分类器算法的要点如下: a)        使用Haar-like特征做检测. b)       使用积分图(IntegralImage)对Haar-like特

基于AdaBoost算法——世纪晟结合Haar-like特征训练人脸检测识别

  AdaBoost?算法是一种快速人脸检测算法,它将根据弱学习的反馈,适应性地调整假设的错误率,使在效率不降低的情况下,检测正确率得到了很大的提高.   系统在技术上的三个贡献: 1.用简单的Haar-like矩形特征作特征,可快速计算 2.基于AdaBoost的分类器设计 3.采用了Cascade(分级分类器)技术提高检测速度 人脸的特征表示方法--Haar-like矩形特征   矩形特征的值是所有白色矩形中点的亮度值的和减去所有灰色矩形中点的亮度值的和,所得到的差 具体特征可以用一个五元组

基于OpenCV读取摄像头进行人脸检测和人脸识别

前段时间使用OpenCV的库函数实现了人脸检测和人脸识别,笔者的实验环境为VS2010+OpenCV2.4.4,opencv的环境配置网上有很多,不再赘述.检测的代码网上很多,记不清楚从哪儿copy的了,识别的代码是从OpenCV官网上找到的:http://docs.opencv.org/trunk/modules/contrib/doc/facerec/facerec_api.html 需要注意的是,opencv的FaceRecogizer目前有三个类实现了它,特征脸和fisherface方法

正式使用opencv里的训练和检测 - opencv_createsamples、opencv_traincascade

好久没有来写blog了,学生生涯终结,就不好好总结了,今天把opencv里关于adaboost训练和检测的过程记录下来,方便别人也方便自己~~~啊哈哈~~~~ 一.基础知识准备 首先,opencv目前仅支持三种特征的训练检测, HAAR.LBP.HOG,选择哪个特征就去补充哪个吧.opencv的这个训练算法是基于adaboost而来的,所以需要先对adaboost进行基础知识补充啊,网上一大堆资料,同志们速度去查阅.我的资源里也有,大家去下载吧,这些我想都不是大家能直接拿来用的,我下面将直接手把

Python学习经典案例:人脸检测

前言 随着科技的发展,人脸识别技术在许多领域得到的非常广泛的应用,手机支付.银行身份验证.手机人脸解锁等等. 识别 废话少说,这里我们使用 opencv 中自带了 haar人脸特征分类器,利用训练好的 haar 特征的 xml 文件,在图片上检测出人脸的坐标,利用这个坐标,我们可以将人脸区域剪切保存,也可以在原图上将人脸框出. 代码实现: # -*-coding:utf8-*-# import os import cv2 from PIL import Image, ImageDraw from

《刷脸背后:人脸检测 人脸识别 人脸检索 》PDF 学习下载

发现一本系统讲解人脸识别一系列技术的好书,叫做<刷脸背后:人脸检测 人脸识别 人脸检索>,这里给大家分享一下,共同学习. 本书高清PDF版下载链接:<刷脸背后:人脸检测 人脸识别 人脸检索 >高清带标签可复制PDF 1 内容介绍: 人脸识别是当今热门的研发方向,在安防.金融.旅游等领域具有十分广泛的应用.本书全面.系统地介绍“刷脸”背后的技术,包括人脸检测.人脸识别.人脸检索相关的算法原理和实现技术.本书中讲解的算法具有高度的可操作性和实用性.通过学习本书,研究人员.工程师能够在3

图片人脸检测——Dlib版(四)

上几篇给大家讲了OpenCV的图片人脸检测,而本文给大家带来的是比OpenCV更加精准的图片人脸检测Dlib库. 点击查看往期: <图片人脸检测——OpenCV版(二)> <视频人脸检测——OpenCV版(三)> dlib与OpenCV对比 识别精准度:Dlib >= OpenCV Dlib更多的人脸识别模型,可以检测脸部68甚至更多的特征点 效果展示 人脸的68个特征点 安装dlib 下载地址:https://pypi.org/simple/dlib/ 选择适合你的版本,本

Python学习案例之视频人脸检测识别

前言 上一篇博文与大家分享了简单的图片人脸识别技术,其实在实际应用中,很多是通过视频流的方式进行识别,比如人脸识别通道门禁考勤系统.人脸动态跟踪识别系统等等. 案例 这里我们还是使用 opencv 中自带了 haar人脸特征分类器,通过读取一段视频来识别其中的人脸. 代码实现: # -*- coding: utf-8 -*- __author__ = "小柒" __blog__ = "https://blog.52itstyle.vip/" import cv2 i

图像处理项目——人脸检测—视频

人脸检测 *开发环境为visual studio2010*使用的是opencv中的Haart特征分类器,harr Cascades*检测对象为视频中的人脸 一:主要步骤 1.加载分类器,将人脸检测分类器和笑脸检测分类器放在项目目录中去 2.调用detecMutiScale()函数检测,对函数中相关的参数进行修改调整, 是检测的结果更加精确 3.打开摄像头或者视频文件,把检测到的人脸用矩形画出来 opencv中用来做目标检测的级联分类器的一个 类,其结构如下: The constructor fo