P1829 [国家集训队]Crash的数字表格 / JZPTAB

推式子太快乐啦!虽然我好蠢而且dummy和maomao好巨(划掉)

思路

莫比乌斯反演的题目
首先这题有\(O(\sqrt n)\)的做法但是我没写咕咕咕
然后就是爆推一波式子
\[
\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)
\]

\[
\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{i\times j}{gcd(i,j)}
\]

设$ gcd(i,j)=d$
\[
\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}i\times j\times[gcd(i,j)=1]
\]

\[
p_1=\lfloor\frac{n}{d}\rfloor\\ p_2=\lfloor\frac{m}{d}\rfloor
\]

设\(f(x)\)为满足条件\(1 \le i \le p_1\)且$1 \le j \le p_2 \(且\)[gcd(i,j)=x]\(的\)i\times j$的和

则可以推出\(F(x)\)为
\[
F(x)=\sum_{x|d}f(d)
\]
所以\(F(x)\)为满足条件\(1 \le i \le p_1\)且$1 \le j \le p_2 \(且\)[x|gcd(i,j)]\(的\)i\times j$的和

所以
\[
F(x)=x^2\times \sum_{i=1}^{\lfloor\frac{p_1}{x}\rfloor}i\times \sum_{j=1}^{\lfloor\frac{p_2}{x}\rfloor}j
\]
因为
\[
f(x)=\sum_{x|d}\mu(\frac{d}{x})F(d)
\]
所以
\[
f(x)=\sum_{x|d}\mu(\frac{d}{x})\times d^2 \times \sum_{i=1}^{\lfloor\frac{p_1}{d}\rfloor}i\times \sum_{j=1}^{\lfloor\frac{p_2}{d}\rfloor}j
\]
所以
\[
f(x)=\sum_{t=1}\mu(t)\times (tx)^2 \times \sum_{i=1}^{\lfloor\frac{p_1}{tx}\rfloor}i\times \sum_{j=1}^{\lfloor\frac{p_2}{tx}\rfloor}j
\]

\[
ans=\sum_{d=1}^{n}d\sum_{t=1}^{\lfloor\frac{n}{d}\rfloor}\mu(t)\times (t)^2 \times \sum_{i=1}^{\lfloor\frac{n}{td}\rfloor}i\times \sum_{j=1}^{\lfloor\frac{m}{td}\rfloor}j
\]

然后两个整除分块搞定,复杂度\(O(n)\)

然后dummy教了我一种新的计算方式
\[
\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}i\times j\times[gcd(i,j)=1]
\]
发现[gcd(i,j)=1]的形式有点眼熟
直接把\(\mu\)带进去算
\[
\sum_{d=1}^{n}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}i\times j\times \sum_{p|gcd(i,j)}\mu(p)
\]
算得
\[
\sum_{d=1}^nd\sum_{p=1}^{\lfloor\frac{n}{d}\rfloor}p^2\mu(p)\sum_{i=1}^{\lfloor\frac{n}{dp}\rfloor}i\sum_{j=1}^{\lfloor\frac{n}{dp}\rfloor}j
\]

代码

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int INV = 10050505;
const int MOD = 20101009;
int isprime[10010000],iprime[10010000],cnt,mu[10010000],summu[10010000],n,m;
void prime(int n){
    isprime[n]=true;
    mu[1]=1;
    for(int i=2;i<=n;i++){
        if(!isprime[i])
            iprime[++cnt]=i,mu[i]=-1;
        for(int j=1;j<=cnt&&iprime[j]*i<=n;j++){
            isprime[iprime[j]*i]=true;
            mu[iprime[j]*i]=-mu[i];
            if(i%iprime[j]==0){
                mu[iprime[j]*i]=0;
                break;
            }
        }
    }
    for(int i=1;i<=n;i++)
        summu[i]=(summu[i-1]%MOD+1LL*(mu[i]%MOD+MOD)%MOD*i%MOD*i%MOD)%MOD;
}
long long calc2(int n,int m){
    long long ans=0;
    for(int l=1,r;l<=min(n,m);l=r+1){
        r=min(n/(n/l),m/(m/l));
        ans=(ans%MOD+1LL*(summu[r]-summu[l-1]%MOD+MOD)%MOD*(1+n/l)%MOD*(n/l)%MOD*INV%MOD*(1+m/l)%MOD*(m/l)%MOD*INV%MOD)%MOD;
    }
    return ans;
}
long long calc1(int n,int m){
    long long ans=0;
    for(int l=1,r;l<=min(n,m);l=r+1){
        r=min(n/(n/l),m/(m/l));
        ans=(ans%MOD+1LL*(r-l+1)%MOD*(r+l)%MOD*INV%MOD*calc2(n/l,m/l)%MOD)%MOD;
    }
    return ans;
}
int main(){
    prime(10001000);
    scanf("%d %d",&n,&m);
    if(n<m)
        swap(n,m);
    long long ans=calc1(n,m);
    printf("%lld",ans);
}

原文地址:https://www.cnblogs.com/dreagonm/p/10073395.html

时间: 2024-10-10 15:11:48

P1829 [国家集训队]Crash的数字表格 / JZPTAB的相关文章

[国家集训队]Crash的数字表格 / JZPTAB

题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整数.例如,LCM(6, 8) = 24. 回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张NM的表格.每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j).一个45的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12 4 20 看着这

【题解】[国家集训队]Crash的数字表格 / JZPTAB

求解\(\sum_{i = 1}^{n}\sum_{j = 1}^{m}lcm\left ( i,j \right )\). 有\(lcm\left ( i,j \right )=\frac{ij}{gcd\left ( i,j \right )}\), 所以原本的式子转化为:\(\sum_{i = 1}^{n}\sum_{j = 1}^{m}\frac{ij}{gcd\left ( i,j \right )}\). 注意到\(i, j\) 均为 \(gcd\left ( i,j \right

【[国家集训队]Crash的数字表格 / JZPTAB】

这道题我们要求的是 \[\sum_{i=1}^N\sum_{j=1}^Mlcm(i,j)\] 总所周知\(lcm\)的性质不如\(gcd\)优雅,但是唯一分解定理告诉我们\(gcd(i,j)\times lcm(i,j)=i\times j\) 所以很容易的可以转化成这个柿子 \[\sum_{i=1}^N\sum_{j=1}^M\frac{i\times j}{(i,j)}\] 现在开始套路了 先设两个函数 \[f(n)=\sum_{i=1}^N\sum_{j=1}^M[(i,j)==n]\ti

「luogu1829」 [国家集训队]Crash的数字表格

莫比乌斯反演推柿子,数论分块降复杂度,最后时间复杂度为O(n). 1 #include<bits/stdc++.h> 2 #define ll long long 3 using namespace std; 4 const int N=1e7+10,mod=20101009; 5 int n,m,mi; 6 ll p[N],tot; 7 ll u[N]; 8 bool isp[N]; 9 void getu(int lim){ 10 u[1]=1; 11 for(int i=2;i<=

【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&amp;&amp;BZOJ 2693 jzptab)

BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格.每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j).一个4*5的表格如下: 1 2 3 4 5 2 2 6 4

BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][Discuss] Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究

【BZOJ 2154】Crash的数字表格 (莫比乌斯+分块)

2154: Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格.每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j).一个4*5的表格如下: 1 2 3 4 5 2 2 6 4 10 3

Crash的数字表格(莫比乌斯反演)

Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张NM的表格.每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j).一个4 5的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12

Crash的数字表格 BZOJ 2154 / jzptab BZOJ 2693

jzptab [问题描述] 求: 多组询问 [输入格式] 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M [输出格式] T行 每行一个整数 表示第i组数据的结果 [样例输入] 1 4 5 [样例输出] 122 [数据范围] T <= 10000 N, M<=10000000 题解: 即后面那个部分为 H[T],H[T]是积性函数,求详细证明的话将T和d展开为质因数次幂相乘的形式,考虑线性筛中枚举的质数与被筛数的性质即可 1 #include<cmath> 2 #i