一开始看到$\frac{\sum_{}}{\sum_{}}$就想到了01分数规划但最终还是看了题解
二分完后的点分治,只需要维护一个由之前处理过的子树得出的$tb数组$,然后根据遍历每个当前的子树上的结点的深度来确定$tb数组$中的滑块。
因为分数规划要找的是$max$,BFS遍历当前结点的深度越来越大,这样滑块也是单调向右滑动,所以滑块里的最大值就应当用单调队列解决
#include<cstdio> #include<algorithm> #define read(x) x=getint() #define N 100003 #define eps 0.0001 #define max(a,b) (a)>(b)?a:b using namespace std; inline int getint() { char c; int fh = 1, k = 0; for( ; c < ‘0‘ || c > ‘9‘; c = getchar()) if ( c == ‘-‘) fh = -1; for( ; c >= ‘0‘ && c <= ‘9‘; c = getchar()) k = k * 10 + c - ‘0‘; return k * fh; } struct node { int nxt, to, w; } E[N << 1]; bool vis[N]; double ans = 0.0, limi = 0.0, dis[N], tb[N]; int sz[N], n, cnt = 0, L, U, point[N], root, rtm = N, fa[N], q[N], dq[N], deep[N]; inline void ins( int x, int y, int z) {++cnt; E[cnt].nxt = point[x]; E[cnt].to = y; E[cnt].w = z; point[x] = cnt;} inline void fdrt( int x, int fa, int s) { sz[x] = 1; int ma = 0; for( int tmp = point[x]; tmp; tmp = E[tmp].nxt) if ( !vis[E[tmp].to] && E[tmp].to != fa) { fdrt( E[tmp].to, x, s); sz[x] += sz[E[tmp].to]; ma = max( ma, sz[E[tmp].to]); } ma = max( ma, s - ma); if ( ma < rtm) { rtm = ma; root = x; } } inline bool can( int x, double M) { int le = 0, head, tail, h, t, now; for( int tmp = point[x]; tmp; tmp = E[tmp].nxt) if ( !vis[E[tmp].to]) { head = 0; tail = 1; q[0] = E[tmp].to; fa[E[tmp].to] = x; deep[E[tmp].to] = 1; dis[E[tmp].to] = (double) E[tmp].w - M; while ( head != tail) { now = q[head]; ++head; if ( head >= N) head %= N; for( int i = point[now]; i; i = E[i].nxt) if ( !vis[E[i].to] && E[i].to != fa[now]) { q[tail] = E[i].to; fa[E[i].to] = now; deep[E[i].to] = deep[now] + 1; dis[E[i].to] = dis[now] + (double) E[i].w - M; ++tail; if ( tail >= N) tail %= N; } } h = 1; t = 0; now = le; for( int i = 0; i < tail; ++i) { while ( deep[q[i]] + now >= L && now >= 0) { while ( h <= t && tb[dq[t]] < tb[now]) --t; dq[++t] = now; --now; } while ( h <= t && deep[q[i]] + dq[h] > U) ++h; if ( h <= t && dis[q[i]] + tb[dq[h]] >= 0) return 1; } for( int i = le + 1; i <= deep[q[tail-1]]; ++i) tb[i] = -1E9; for( int i = 0; i < tail; ++i) tb[deep[q[i]]] = max( tb[deep[q[i]]], dis[q[i]]); le = max( le, deep[q[tail-1]]); } return 0; } inline void work( int x) { double left = ans, right = limi, mid; while ( right - left > eps) { mid = ( left + right) / 2; if ( can ( x, mid)) left = mid; else right = mid; } ans = left; } inline void dfs( int x, int s) { vis[x] = 1; work( x); for( int tmp = point[x]; tmp; tmp = E[tmp].nxt) if ( !vis[E[tmp].to]) { rtm = N; int ss = sz[E[tmp].to] < sz[x] ? sz[E[tmp].to] : s - sz[x]; fdrt( E[tmp].to, -1, ss); if ( sz[E[tmp].to] > L) dfs( root, ss); } } int main() { read(n); read(L); read(U); int a, b, c; for( int i = 1; i < n; ++i) { read(a); read(b); read(c); ins( a, b, c); ins( b, a, c); limi = max( limi, c); } fdrt( 1, -1, n); dfs( 1, n); printf( "%.3lf\n", ans); return 0; }
这样就可以了
时间: 2024-12-05 00:18:39