LeetCode: Distinct Subsequences 解题报告

Distinct Subsequences

Given a string S and a string T, count the number of distinct subsequences of T in S.

A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).

Here is an example:
S = "rabbbit", T = "rabbit"

Return 3.

SOLUTION 1(AC):

现在这种DP题目基本都是5分钟AC咯。主页君引一下别人的解释咯:

http://blog.csdn.net/fightforyourdream/article/details/17346385?reload#comments

http://blog.csdn.net/abcbc/article/details/8978146

引自以上的解释:

遇到这种两个串的问题,很容易想到DP。但是这道题的递推关系不明显。可以先尝试做一个二维的表int[][] dp,用来记录匹配子序列的个数(以S ="rabbbit",T = "rabbit"为例):

r a b b b i t

1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1

a 0 1 1 1 1 1 1

b 0 0 2 3 3 3

b 0 0 0 0 3 3 3

i 0 0 0 0 0 0 3 3

t 0 0 0 0 0 0 0 3

从这个表可以看出,无论T的字符与S的字符是否匹配,dp[i][j] = dp[i][j - 1].就是说,假设S已经匹配了j - 1个字符,得到匹配个数为dp[i][j - 1].现在无论S[j]是不是和T[i]匹配,匹配的个数至少是dp[i][j - 1]。除此之外,当S[j]和T[i]相等时,我们可以让S[j]和T[i]匹配,然后让S[j - 1]和T[i - 1]去匹配。所以递推关系为:

dp[0][0] = 1; // T和S都是空串.

dp[0][1 ... S.length() - 1] = 1; // T是空串,S只有一种子序列匹配。

dp[1 ... T.length() - 1][0] = 0; // S是空串,T不是空串,S没有子序列匹配。

dp[i][j] = dp[i][j - 1] + (T[i - 1] == S[j - 1] ? dp[i - 1][j - 1] : 0).1 <= i <= T.length(), 1 <= j <= S.length()

这道题可以作为两个字符串DP的典型:

两个字符串:

先创建二维数组存放答案,如解法数量。注意二维数组的长度要比原来字符串长度+1,因为要考虑第一个位置是空字符串。

然后考虑dp[i][j]和dp[i-1][j],dp[i][j-1],dp[i-1][j-1]的关系,如何通过判断S.charAt(i)和T.charAt(j)的是否相等来看看如果移除了最后两个字符,能不能把问题转化到子问题。

最后问题的答案就是dp[S.length()][T.length()]

还有就是要注意通过填表来找规律。

注意:循环的时候,一定要注意i的取值要到len,这个出好几次错了。

 1 public class Solution {
 2     public int numDistinct(String S, String T) {
 3         if (S == null || T == null) {
 4             return 0;
 5         }
 6
 7         int lenS = S.length();
 8         int lenT = T.length();
 9
10         if (lenS < lenT) {
11             return 0;
12         }
13
14         int[][] D = new int[lenS + 1][lenT + 1];
15
16         // BUG 1: forget to use <= instead of <....
17         for (int i = 0; i <= lenS; i++) {
18             for (int j = 0; j <= lenT; j++) {
19                 // both are empty.
20                 if (i == 0 && j == 0) {
21                     D[i][j] = 1;
22                 } else if (i == 0) {
23                     // S is empty, can‘t form a non-empty string.
24                     D[i][j] = 0;
25                 } else if (j == 0) {
26                     // T is empty. S is not empty.
27                     D[i][j] = 1;
28                 } else {
29                     D[i][j] = 0;
30                     // keep the last character of S.
31                     if (S.charAt(i - 1) == T.charAt(j - 1)) {
32                         D[i][j] += D[i - 1][j - 1];
33                     }
34
35                     // discard the last character of S.
36                     D[i][j] += D[i - 1][j];
37                 }
38             }
39         }
40
41         return D[lenS][lenT];
42     }
43 }

运行时间:

Submit Time Status Run Time Language
13 minutes ago Accepted 432 ms java

SOLUTION 2:

递归解法也写一下,蛮简单的:

但是这个解法过不了,TLE了。

 1 // SOLUTION 2: recursion version.
 2     public int numDistinct(String S, String T) {
 3         if (S == null || T == null) {
 4             return 0;
 5         }
 6
 7         return rec(S, T, 0, 0);
 8     }
 9
10     public int rec(String S, String T, int indexS, int indexT) {
11         int lenS = S.length();
12         int lenT = T.length();
13
14         // base case:
15         if (indexT >= lenT) {
16             // T is empty.
17             return 1;
18         }
19
20         if (indexS >= lenS) {
21             // S is empty but T is not empty.
22             return 0;
23         }
24
25         int sum = 0;
26         // use the first character in S.
27         if (S.charAt(indexS) == T.charAt(indexT)) {
28             sum += rec(S, T, indexS + 1, indexT + 1);
29         }
30
31         // Don‘t use the first character in S.
32         sum += rec(S, T, indexS + 1, indexT);
33
34         return sum;
35     }

SOLUTION 3:

递归加上memory记忆之后,StackOverflowError. 可能还是不够优化。确实递归层次太多。

Runtime Error Message: Line 125: java.lang.StackOverflowError
Last executed input: "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

 1 // SOLUTION 3: recursion version with memory.
 2     public int numDistinct(String S, String T) {
 3         if (S == null || T == null) {
 4             return 0;
 5         }
 6
 7         int lenS = S.length();
 8         int lenT = T.length();
 9
10         int[][] memory = new int[lenS + 1][lenT + 1];
11         for (int i = 0; i <= lenS; i++) {
12             for (int j = 0; j <= lenT; j++) {
13                 memory[i][j] = -1;
14             }
15         }
16
17         return rec(S, T, 0, 0, memory);
18     }
19
20     public int rec(String S, String T, int indexS, int indexT, int[][] memory) {
21         int lenS = S.length();
22         int lenT = T.length();
23
24         // base case:
25         if (indexT >= lenT) {
26             // T is empty.
27             return 1;
28         }
29
30         if (indexS >= lenS) {
31             // S is empty but T is not empty.
32             return 0;
33         }
34
35         if (memory[indexS][indexT] != -1) {
36             return memory[indexS][indexT];
37         }
38
39         int sum = 0;
40         // use the first character in S.
41         if (S.charAt(indexS) == T.charAt(indexT)) {
42             sum += rec(S, T, indexS + 1, indexT + 1);
43         }
44
45         // Don‘t use the first character in S.
46         sum += rec(S, T, indexS + 1, indexT);
47
48         // record the solution.
49         memory[indexS][indexT] = sum;
50         return sum;
51     }

SOLUTION 4 (AC):

参考了http://blog.csdn.net/fightforyourdream/article/details/17346385?reload#comments的代码后,发现递归过程找解的过程可以优化。我们不需要沿用DP的思路

而应该与permutation之类差不多,把当前可能可以取的解都去尝试一次。就是在S中找到T的首字母,再进一步递归。

Submit Time Status Run Time Language
0 minutes ago Accepted 500 ms java

 1 // SOLUTION 4: improved recursion version
 2     public int numDistinct(String S, String T) {
 3         if (S == null || T == null) {
 4             return 0;
 5         }
 6
 7         int lenS = S.length();
 8         int lenT = T.length();
 9
10         int[][] memory = new int[lenS + 1][lenT + 1];
11         for (int i = 0; i <= lenS; i++) {
12             for (int j = 0; j <= lenT; j++) {
13                 memory[i][j] = -1;
14             }
15         }
16
17         return rec4(S, T, 0, 0, memory);
18     }
19
20     public int rec4(String S, String T, int indexS, int indexT, int[][] memory) {
21         int lenS = S.length();
22         int lenT = T.length();
23
24         // base case:
25         if (indexT >= lenT) {
26             // T is empty.
27             return 1;
28         }
29
30         if (indexS >= lenS) {
31             // S is empty but T is not empty.
32             return 0;
33         }
34
35         if (memory[indexS][indexT] != -1) {
36             return memory[indexS][indexT];
37         }
38
39         int sum = 0;
40         for (int i = indexS; i < lenS; i++) {
41             // choose which character in S to choose as the first character of T.
42             if (S.charAt(i) == T.charAt(indexT)) {
43                 sum += rec4(S, T, i + 1, indexT + 1, memory);
44             }
45         }
46
47         // record the solution.
48         memory[indexS][indexT] = sum;
49         return sum;
50     }

SOLUTION 5:

在SOLUTION 4的基础之上,把记忆体去掉之后,仍然是TLE

Time Limit ExceededMore Details

Last executed input: "daacaedaceacabbaabdccdaaeaebacddadcaeaacadbceaecddecdeedcebcdacdaebccdeebcbdeaccabcecbeeaadbccbaeccbbdaeadecabbbedceaddcdeabbcdaeadcddedddcececbeeabcbecaeadddeddccbdbcdcbceabcacddbbcedebbcaccac", "ceadbaa"

 1 // SOLUTION 5: improved recursion version without memory.
 2     public int numDistinct(String S, String T) {
 3         if (S == null || T == null) {
 4             return 0;
 5         }
 6
 7         return rec5(S, T, 0, 0);
 8     }
 9
10     public int rec5(String S, String T, int indexS, int indexT) {
11         int lenS = S.length();
12         int lenT = T.length();
13
14         // base case:
15         if (indexT >= lenT) {
16             // T is empty.
17             return 1;
18         }
19
20         if (indexS >= lenS) {
21             // S is empty but T is not empty.
22             return 0;
23         }
24
25         int sum = 0;
26         for (int i = indexS; i < lenS; i++) {
27             // choose which character in S to choose as the first character of T.
28             if (S.charAt(i) == T.charAt(indexT)) {
29                 sum += rec5(S, T, i + 1, indexT + 1);
30             }
31         }
32
33         return sum;
34     }

总结:

大家可以在SOLUTION 1和SOLUTION 4两个选择里用一个就好啦。

http://blog.csdn.net/fightforyourdream/article/details/17346385?reload#comments

这道题可以作为两个字符串DP的典型:

两个字符串:

先创建二维数组存放答案,如解法数量。注意二维数组的长度要比原来字符串长度+1,因为要考虑第一个位置是空字符串。

然后考虑dp[i][j]和dp[i-1][j],dp[i][j-1],dp[i-1][j-1]的关系,如何通过判断S.charAt(i)和T.charAt(j)的是否相等来看看如果移除了最后两个字符,能不能把问题转化到子问题。

最后问题的答案就是dp[S.length()][T.length()]

还有就是要注意通过填表来找规律。

GITHUB:

https://github.com/yuzhangcmu/LeetCode_algorithm/blob/master/dp/NumDistinct.java

时间: 2024-10-22 02:33:22

LeetCode: Distinct Subsequences 解题报告的相关文章

Leetcode 115 Distinct Subsequences 解题报告

Distinct Subsequences Total Accepted: 38466 Total Submissions: 143567My Submissions Question Solution Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence of a string is a new string which is formed from

【LeetCode】Distinct Subsequences 解题报告

[题目] Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the rela

[LeetCode] Distinct Subsequences 解题思路

Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative

Distinct Subsequences 解题报告

题目:给两个字符串S和T,判断T在S中出现的次数. A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a

【LeetCode】Subsets 解题报告

[题目] Given a set of distinct integers, S, return all possible subsets. Note: Elements in a subset must be in non-descending order. The solution set must not contain duplicate subsets. For example, If S = [1,2,3], a solution is: [ [3], [1], [2], [1,2,

LeetCode: Distinct Subsequences

LeetCode: Distinct Subsequences Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters

LeetCode: Distinct Subsequences [115]

[题目] Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the rela

LeetCode: Combination Sum 解题报告

Combination Sum Combination Sum Total Accepted: 25850 Total Submissions: 96391 My Submissions Question Solution Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T. The

[LeetCode]LRU Cache, 解题报告

题目 Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set. get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.