HDFS2—SequenceFile(小文件的解决方案)

1、这种方法是说,使用filename作为key,并且file contents作为value。实践中这种方式非常管用。

2、和HAR不同的是,这种方式还支持压缩。

3、block的压缩在许多情况下都是最好的选择,因为它将多个 records压缩到一起,而不是一个record一个压缩。

4、在存储结构上,SequenceFile主要由一个Header后跟多条Record组成。

5、Header主要包含了Key classname,Value classname,存储压缩算法,用户自定义元数据等信息,此外,还包含了一些同步标识,用于快速定位到记录的边界。

6、每条Record以键值对的方式进行存储,用来表示它的字符数组可依次解析成:记录的长度、Key的长度、Key值和Value值,并且Value值的结构取决于该记录是否被压缩。

7、数据压缩有利于节省磁盘空间和加快网络传输,SeqeunceFile支持两种格式的数据压缩,分别是:record compression和block compression。
8、record compression如上图所示,是对每条记录的value进行压缩
9、block compression是将一连串的record组织到一起,统一压缩成一个block,如上图。

10、block信息主要存储了:块所包含的记录数、每条记录Key长度的集合、每条记录Key值的集合、每条记录Value长度的集合和每条记录Value值的集合
注:每个block的大小是可通过io.seqfile.compress.blocksize属性来指定的。

时间: 2024-12-20 07:47:22

HDFS2—SequenceFile(小文件的解决方案)的相关文章

小文件的解决方案

小文件指的是那些size比HDFS的block size(默认64M)小的多的文件.任何一个文件,目录和block,在HDFS中都会被表示为一个object存储在namenode的内存中,每一个object占用150 bytes的内存空间.所以,如果有10million个文件,每一个文件对应一个block,那么就将要消耗namenode 3G的内存来保存这些block的信息.如果规模再大一些,那么将会超出现阶段计算机硬件所能满足的极限. 解决小文件的四种解决方案: 1.应用程序自己控制 2.ar

Hadoop对小文件的解决方案

小文件指的是那些size比HDFS的block size(默认64M)小的多的文件.任何一个文件,目录和block,在HDFS中都会被表示为一个object存储在namenode的内存中, 每一个object占用150 bytes的内存空间.所以,如果有10million个文件, 每一个文件对应一个block,那么就将要消耗namenode 3G的内存来保存这些block的信息.如果规模再大一些,那么将会超出现阶段计算机硬件所能满足的极限. 控制小文件的方法有: 1.应用程序自己控制 2.arc

大数据-Hadoop小文件问题解决方案

HDFS中小文件是指文件size小于HDFS上block(dfs block size)大小的文件.大量的小文件会给Hadoop的扩展性和性能带来严重的影响.HDFS中小文件是指文件size小于HDFS上block大小的文件.大量的小文件会给Hadoop的扩展性和性能带来严重的影响. 大数据学习群:716581014 小文件是如何产生的? 动态分区插入数据,产生大量的小文件,从而导致map数量剧增 reduce数量越多,小文件也越多,reduce的个数和输出文件个数一致 数据源本身就是大量的小文

Hadoop的小文件解决方案

小文件指的是那些size比HDFS的block size(默认64M)小的多的文件.任何一个文件,目录和block,在HDFS中都会被表示为一个object存储在namenode的内存中,每一个object占用150bytes的内存空间.所以,如果有10million(一千万)个文件,每一个文件对应一个block,那么就将要消耗namenode3G的内存来保存这些block的信息,如果规模再大一些,那么将会超出现阶段计算机硬件所能满足的极限. 相同大小下,小文件越多,对namenode造成的内存

关于rsync删除大量小文件的问题?

关于网上大量的rsync删除100w小文件的解决方案.博主两台虚拟机,每个目录下有100w个小文件,以下分别为rm和rsync两种删除方法 rm 环境:CentOS release 5.8 ,内存1G,处理器单核,硬盘30G 使用rsync删除,环境:CentOS release 6.5,内存500M,处理器单核,硬盘30G 开始怀疑网上看文章的人都有尝试过么?然后在看看两台机子的配置,调高了rsync所在机子的内存为1G,环境:CentOS release 6.5,内存1G,处理器单核,硬盘3

Hive优化之小文件问题及其解决方案

小文件是如何产生的 1.动态分区插入数据,产生大量的小文件,从而导致map数量剧增. 2.reduce数量越多,小文件也越多(reduce的个数和输出文件是对应的). 3.数据源本身就包含大量的小文件. 小文件问题的影响 1.从Hive的角度看,小文件会开很多map,一个map开一个JVM去执行,所以这些任务的初始化,启动,执行会浪费大量的资源,严重影响性能. 2.在HDFS中,每个小文件对象约占150byte,如果小文件过多会占用大量内存.这样NameNode内存容量严重制约了集群的扩展. 小

[Hadoop]大量小文件问题及解决方案

1. HDFS上的小文件问题 小文件是指文件大小明显小于HDFS上块(block)大小(默认64MB)的文件.如果存储小文件,必定会有大量这样的小文件,否则你也不会使用Hadoop(If you're storing small files, then you probably have lots of them (otherwise you wouldn't turn to Hadoop)),这样的文件给hadoop的扩展性和性能带来严重问题.当一个文件的大小小于HDFS的块大小(默认64MB

[转载]mapreduce合并小文件成sequencefile

mapreduce合并小文件成sequencefile http://blog.csdn.net/xiao_jun_0820/article/details/42747537

Hadoop小文件问题及解决方案

1.概述 小文件是指文件size小于HDFS上block大小的文件.这样的文件会给hadoop的扩展性和性能带来严重问题.首先,在HDFS中,任何block,文件或者目录在内存中均以对象的形式存储,每个对象约占150byte,如果有1千万个小文件,每个文件占用一个block,则NameNode大约需要2G空间.如果存储一亿个文件,则NameNode需要20G空间.这样NameNode内存容量严重制约了集群的扩展.其次,访问大量小文件速度远远小于访问几个大文件.HDFS最初是为流式访问大文件开发的