基于协同过滤的推荐引擎

(一)推荐引擎用例

  • 京东、淘宝根据客户的购买历史来推荐;
  • 爱奇艺、乐视根据向用户推荐电影;

(二)推荐算法

  • 基于关系规则推荐:用户A经常同时购买了哪些商品,分析这些商品的关联规则,则用户B购买其中某一商品,可推荐其它商品;
  • 基于内容推荐:用户喜欢A电影,B电影和A属于同一类型,比如爱情片,则该用户还可能喜欢B电影;
  • 基于人口统计学推荐:将用户A的属性或特征一一罗列,如年龄、性别、职业等,如果用户B和A具有相似的属性,则用户B和用户A可能有相似购物喜好。
  • 基于协同过滤:
    • 基于用户:将一个用户对同所有item或content的偏好作为一个向量,计算用户之间的相似度;比如用户A购买了商品1和商品2,用户B也购买了商品1和商品2,则用户A购买了商品3时,可推荐用户B商品3。
    • 基于物品:将所有用户对某一item或content的偏好作为一个向量,计算item或content的相似度;比如用户A、用户B、用户C都购买了商品1,同时这些用户也都购买了商品2, 则用户D购买商品1时可推荐其购买商品2。

原文地址:https://www.cnblogs.com/stpan/p/9452448.html

时间: 2024-11-11 12:55:08

基于协同过滤的推荐引擎的相关文章

基于协同过滤的推荐引擎(实战部分)

基于协同过滤的推荐引擎(理论部分) 时隔十日,终于决心把它写出来.大多数实验都是3.29日做的,结合3.29日写的日记完成了这篇实战. 数据集准备 数据集使用上篇提到的Movielens电影评分数据里的ml-latest-small数据集,下载完成后有下面四个csv文件. 我们这里只需要ratings.csv就够了,打开以后会发现长这样: 是的,它果然和数据库里的没两样,上篇我们介绍的一般评分估计也好,神奇的SVD评分估计也好,前提都是有一个长成下面这样的物品-用户矩阵 然后提出其中的两列,传给

基于协同过滤的个性化Web推荐

         下面这是论文笔记,其实主要是摘抄,这片博士论文很有逻辑性,层层深入,所以笔者保留的比较多.          看到第二章,我发现其实这片文章对我来说更多是科普,科普吧-- 一.论文来源 Personalized Web Recommendation via Collaborative Filtering(很奇怪via为什么小写,先记住吧) (Candidate)博士研究生:孙慧峰 (Advisor)导师:陈俊亮(院士) (Academic Degree Applied for)

基于协同过滤算法的推荐

基于协同过滤算法的推荐 (本实验选用数据为真实电商脱敏数据,仅用于学习,请勿商用) 数据挖掘的一个经典案例就是尿布与啤酒的例子.尿布与啤酒看似毫不相关的两种产品,但是当超市将两种产品放到相邻货架销售的时候,会大大提高两者销量.很多时候看似不相关的两种产品,却会存在这某种神秘的隐含关系,获取这种关系将会对提高销售额起到推动作用,然而有时这种关联是很难通过经验分析得到的.这时候我们需要借助数据挖掘中的常见算法-协同过滤来实现.这种算法可以帮助我们挖掘人与人以及商品与商品的关联关系. 协同过滤算法是一

基于协同过滤的新闻推荐思路分享

目录结构 1,推荐系统的概率及部署 2,新闻推荐系统特点分析 3,协同过滤算法分析 4,系统评估与安全 一:推荐系统的概览及部署 首先明确一个概念,推荐系统是什么,或者说解决了什么样的一个问题. 新闻推荐系统解决的是咨询.用户和环境之间的关系,如图,通过对用户特征.环境特征.文章特征做综合分析,将最合适.有效的内容推荐给用户. 推荐系统在业务平台的定位 正所谓巧妇难为无米之炊,不光新闻推荐系统,几乎所有人工智能模型都离不开大数据组件的支持. 要做到一个“千人千面的推荐系统“,需要大数据的支持,可

基于MLlib的机器学习--协同过滤与推荐

<Spark快速大数据分析> 11.5.4 协同过滤与推荐 协同过滤是一种根据用户对各种产品的交互与评分来推荐新产品的推荐系统技术. 协同过滤引入的地方就在于它只需要输入一系列用户/产品的交互记录: 无论是显式的交互(例如在购物网站上进行评分)还是隐式的(例如用户访问了一个 产品的页面但是没有对产品评分)交互皆可.仅仅根据这些交互,协同过滤算法就能 够知道哪些产品之间比较相似(因为相同的用户与它们发生了交互)以及哪些用户之间 比较相似,然后就可以做出新的推荐. 尽管MLlib的API使用了用户

基于协同过滤的推荐系统

在上一篇博文中,我已经总结了几种主要的推荐方法,其中,基于内容和基于协同过滤是目前的主流算法,很多电子商务网站的推荐系统都是基于这两种算法的.基于内容在第一篇博文中已经详细介绍了,因此本博文主要是介绍基于协同过滤的个性化推荐系统. 协同过滤是一种基于一组兴趣相同的用户或项目进行的推荐,它根据邻居用户(与目标用户兴趣相似的用户)的偏好信息产生对目标用户的推荐列表.协同过滤算法主要分为基于用户的协同过滤算法和基于项目的协同过滤算法. 基于用户的(User based)协同过滤算法是根据邻居用户的偏好

(5)基于协同过滤推荐算法的图书推荐研究

协同过滤算法以其出色的计算速度和健壮性,在全球范围内特别是在互联网领域中取得了巨大成功.文章介绍了基于物品的协同过滤算法的基本思想和实现步骤,以及应用于实际图书推荐项目中的效果和产生的问题.基于物品的协同过滤算法的基本原理是和某用户历史上感兴趣的物品,越相似的物品,越有可能在用户的推荐列表中获得比较高的排名.算法的基本步骤为收集用户偏好,计算物品之间的相似度,计算用户对某一个物品的兴趣度.文章中介绍的系统在实际应用中效果良好.今后该系统的升级版将重点研究如何解决算法的稀疏性以及如何提高图书推荐质

协同过滤-音乐推荐

一.协同过滤算法 基于用户的协同过滤算法:这种算法最大的问题如何判断并量化两人的相似性,思路是这样 例子: 有3首歌放在那里,<最炫民族风>,<晴天>,<Hero>. A君,收藏了<最炫民族风>,而遇到<晴天>,<Hero>则总是跳过: B君,经常单曲循环<最炫民族风>,<晴天>会播放完,<Hero>则拉黑了 C君,拉黑了<最炫民族风>,而<晴天><Hero>都收

探索推荐引擎内部的秘密,第 2 部分: 深入推荐引擎相关算法 - 协同过滤(转)

第 2 部分: 深入推荐引擎相关算法 - 协同过滤 本系列的第一篇为读者概要介绍了推荐引擎,下面几篇文章将深入介绍推荐引擎的相关算法,并帮助读者高效的实现这些算法. 在现今的推荐技术和算法中,最被大家广泛认可和采用的就是基于协同过滤的推荐方法.它以其方法模型简单,数据依赖性低,数据方便采集 , 推荐效果较优等多个优点成为大众眼里的推荐算法“No.1”.本文将带你深入了解协同过滤的秘密,并给出基于 Apache Mahout 的协同过滤算法的高效实现.Apache Mahout 是 ASF 的一个