小朋友学数据结构(3):二叉树的建立和遍历

小朋友学数据结构(3):二叉树的建立和遍历

一、基本概念

BinaryTree.png

二叉树:每个结点的子结点个数不大于2的树,叫做二叉树。

根结点:最顶部的那个结点叫做根结点,根结点是所有子结点的共同祖先。比如上图中的“7”结点就是根结点。

子结点:除了根结点外的结点,都叫子结点。

叶子结点:没有子结点的结点,叫做叶子结点。比如上图中的“1”结点、“5”结点和“11”结点。

二叉树的遍历,有三种:

(1)前序遍历:先遍历根结点,再遍历左子树,最后遍历右子树。上图的前序遍历顺序为:7->4->1->5->12->8->11->13

(2)中序遍历:先遍历左子树,再遍历根结点,最后遍历右子树。上图的中序遍历顺序为:1->4->5->7->8->11->12->13

(3)后序遍历:先遍历左子树,再遍历右子树,最后遍历根结点。上图的后序遍历顺序为:1->5->4->11->8->13->12->7

二叉排序树:左子结点 <= 根结点 <= 右子结点的二叉树,叫做二叉排序树(或排序二叉树)。上图就是一个二叉排序树。

二、二叉树的建立和遍历

#include<iostream>
using namespace std;

struct BTreeNode                //定义二叉树结点的数据结构
{
    int data;
    BTreeNode *leftChild;       //左子结点指针
    BTreeNode *rightChild;      //右子结点指针
};

class Btree
{
private:                                //private可以不写,因为默认就是private
    BTreeNode *root;                    //根结点的指针

    void preOrderTraverse(BTreeNode *); //前序遍历具体过程,内部接口
    void inOrderTraverse(BTreeNode *);  //中序遍历具体过程,内部接口
    void postOrderTraverse(BTreeNode *);//后序遍历具体过程,内部接口

public:
    Btree()                     //构造函数
    {
        root = NULL;
    }

    void createBtree(int);

    void preOrder()                     //前序遍历方法,对外接口
    {
        preOrderTraverse(root);
    }

    void inOrder()                      //中序遍历方法,对外接口
    {
        inOrderTraverse(root);
    }

    void postOrder()                    //后序遍历方法,对外接口
    {
        postOrderTraverse(root);
    }
};

void Btree::createBtree(int x)
{
    BTreeNode *newnode = new BTreeNode;
    newnode->data = x;
    newnode->leftChild = NULL;
    newnode->rightChild = NULL;

    if(NULL == root)    //如果没有根结点,则第一个结点就是根结点
    {
        root = newnode;
    }
    else                //根据数值大小判断是左子结点还是右子结点
    {
        BTreeNode *father;
        BTreeNode *current = root;

        while(current != NULL)   //找到要插入newnode的节点指针
        {
            father = current;
            if(current->data > x)
            {
                current = current->leftChild;
            }
            else
            {
                current = current->rightChild;
            }
        }

        //newnode插入到father结点的左(或右)子结点位置
        if(father->data > x)
        {
            father->leftChild = newnode;
        }
        else
        {
            father->rightChild = newnode;
        }
    }
}

void Btree::preOrderTraverse(BTreeNode *root)
{
    if(root)
    {
        cout << root->data << " ";
        preOrderTraverse(root->leftChild);
        preOrderTraverse(root->rightChild);
    }
}

void Btree::inOrderTraverse(BTreeNode *root)
{
    if(root)
    {
        inOrderTraverse(root->leftChild);
        cout << root->data << " ";
        inOrderTraverse(root->rightChild);
    }
}

void Btree::postOrderTraverse(BTreeNode *root)
{
    if(root)
    {
        postOrderTraverse(root->leftChild);
        postOrderTraverse(root->rightChild);
        cout << root->data << " ";
    }
}

int main()
{
    Btree btree;
    int a[] = {7, 4, 1, 5, 12, 8, 13, 11};

    //排序二叉树:左子结点<根节点<右子节点
    cout << "建立排序二叉树: ";
    int cnt = sizeof(a) / sizeof(int);
    for(int i = 0; i < cnt; i++)
    {
        cout << a[i] << " ";
        btree.createBtree(a[i]);
    }
    cout << endl;

    cout << "前序遍历: ";
    btree.preOrder();
    cout << endl;

    cout << "中序遍历: ";
    btree.inOrder();
    cout << endl;

    cout << "后序遍历: ";
    btree.postOrder();
    cout << endl;

    return 0;
}

运行结果:

建立排序二叉树: 7 4 1 5 12 8 13 11
前序遍历:7 4 1 5 12 8 11 13
中序遍历:1 4 5 7 8 11 12 13
后序遍历:1 5 4 11 8 13 12 7

原文地址:https://www.cnblogs.com/alan-blog-TsingHua/p/9607574.html

时间: 2024-12-14 17:40:32

小朋友学数据结构(3):二叉树的建立和遍历的相关文章

小朋友学数据结构(4):归并排序

小朋友学数据结构(4):归并排序 (一)基本思想 归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的.然后再把有序子序列合并为整体有序序列. 7-1.jpg (二)代码实现 import java.util.Arrays; public class Sort { public static void mergeSort(int[] array) { sort(array, 0, array.length - 1); } p

小朋友学数据结构(11):堆排序

小朋友学数据结构(11):堆排序 (一)什么是堆 堆实际上是一棵完全二叉树,其任何一非叶节点满足性质: Key[i]<=key[2i+1]&&Key[i]<=key[2i+2]或者 Key[i]>=Key[2i+1]&&key>=key[2i+2], 即任何一非叶节点的关键字不大于或者不小于其左右孩子节点的关键字. 堆分为大顶堆和小顶堆,满足Key[i]>=Key[2i+1]&&key>=key[2i+2]称为大顶堆,满足

小朋友学数据结构(5):顺序查找法

小朋友学数据结构(5):顺序查找法 查找是最常见的数据操作之一,也是数据结构的核心运算之一,其重要性不言而喻. 顺序查找是最简单的查找策略,对于小规模的数据,顺序查找是个不错的选择. (一)基本思想 从数据的第一个元素开始,依次比较,直到找到目标数据或查找失败. 1 从表中的第一个元素开始,依次与关键字比较. 2 若某个元素匹配关键字,则查找成功. 3 若查找到最后一个元素还未匹配关键字,则查找失败. 1.png (二)时间复杂度 顺序查找平均关键字匹配次数为表长的一半,其时间复杂度为O(n).

小朋友学数据结构(10):基数排序

小朋友学数据结构(10):基数排序 一.基本思想 将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零.然后,从最低位(即个位数)开始,依次进行一次排序.这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列. 与其他排序不同的是,基数排序不涉及数的交换. 基数排序是一种稳定的排序算法. 8.png 二.主要步骤 从上面的计算过程,咱们可以看出,基数排序主要有三个步骤: 1.把所有元素都分配到相应的桶中(因为整数每位数有0~9共十种可能,所以通常需要10个桶) 2.把

小朋友学数据结构(8):直接插入排序

小朋友学数据结构(8):直接插入排序 (一)基本思想 在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的.如此反复循环,直到全部排好顺序. 1-1.jpg (二)C语言代码实现 #include<stdio.h> void insertSort(int a[], int n) { int i, j, temp; for (i = 1; i < n; i++) { temp = a[i]; j =

小朋友学数据结构(7):快速排序

小朋友学数据结构(7):快速排序 一.快速排序 (一)基本思想 选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分. (二)例子 6-1.png 以{5, 9, 2, 7 ,8, 3, 6, 1, 4, 0}为例. 选择第0个元素5作为参照数,咱们第一步的目标是把比5小的数都调整到5的左边,比5大的数都调到5的右边. (1)从左往右开始观

小朋友学数据结构(9):希尔排序

小朋友学数据结构(9):希尔排序 (一)基本思想 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序:随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止. (二)例子 有一个数组,其原始数组为: 2-1.png 取初始增量gap = length / 2 = 5,这样就将整个数组分为5组(每组用相同的颜色表示) 2-2.png 将这5组的数据分别按由小到大的顺序排列,结果为 2-3.png 缩小增量gap = gap / 2 = 2,整

小朋友学数据结构(6):折半查找法

小朋友学数据结构(6):折半查找法 折半查找法又称为二分查找法. (一)基本思想 假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功:否则利用中间位置记录将表分成前.后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表. 重复以上过程,直到找到满足条件的记录,此时查找成功:或直到子表不存在为止,此时查找不成功. 2.png (二)时间复杂度 二分查找的基本思想是将n个元素分成大致相等的两部分,取a[n/2]与x

小朋友学数据结构(2):栈

小朋友学数据结构(2):栈 栈是一种先入后出的数据结构. 如下图所示,入栈的顺序为1.2.3:出栈的顺序则反过来:3.2.1. stack.png 可以想象往一个箱子里放书,先放进去的书必然在箱子的底部,最后放进去的书在箱子的顶部.拿书的时候则要先拿顶部(后放进去)的书,最先放进去的书最后才能拿出来. 栈可以用链表来实现: #include<iostream> using namespace std; struct node //定义栈的结点结构 { int data; node *next;