为什么用交叉熵代替二次代价函数

交叉熵代价函数(Cross-entropy cost function)是用来衡量人工神经网络(ANN)的预测值与实际值的一种方式。与二次代价函数相比,它能更有效地促进ANN的训练。在介绍交叉熵代价函数之前,本文先简要介绍二次代价函数,以及其存在的不足。

1. 二次代价函数的不足

ANN的设计目的之一是为了使机器可以像人一样学习知识。人在学习分析新事物时,当发现自己犯的错误越大时,改正的力度就越大。比如投篮:当运动员发现自己的投篮方向离正确方向越远,那么他调整的投篮角度就应该越大,篮球就更容易投进篮筐。同理,我们希望:ANN在训练时,如果预测值与实际值的误差越大,那么在反向传播训练的过程中,各种参数调整的幅度就要更大,从而使训练更快收敛。然而,如果使用二次代价函数训练ANN,看到的实际效果是,如果误差越大,参数调整的幅度可能更小,训练更缓慢。

以一个神经元的二类分类训练为例,进行两次实验(ANN常用的激活函数为sigmoid函数,该实验也采用该函数):输入一个相同的样本数据x=1.0(该样本对应的实际分类y=0);两次实验各自随机初始化参数,从而在各自的第一次前向传播后得到不同的输出值,形成不同的代价(误差):

实验1:第一次输出值为0.82

实验2:第一次输出值为0.98

在实验1中,随机初始化参数,使得第一次输出值为0.82(该样本对应的实际值为0);经过300次迭代训练后,输出值由0.82降到0.09,逼近实际值。而在实验2中,第一次输出值为0.98,同样经过300迭代训练,输出值只降到了0.20。

从两次实验的代价曲线中可以看出:实验1的代价随着训练次数增加而快速降低,但实验2的代价在一开始下降得非常缓慢;直观上看,初始的误差越大,收敛得越缓慢。

其实,误差大导致训练缓慢的原因在于使用了二次代价函数。二次代价函数的公式如下:

其中,C表示代价,x表示样本,y表示实际值,a表示输出值,n表示样本的总数。为简单起见,同样一个样本为例进行说明,此时二次代价函数为:

目前训练ANN最有效的算法是反向传播算法。简而言之,训练ANN就是通过反向传播代价,以减少代价为导向,调整参数。参数主要有:神经元之间的连接权重w,以及每个神经元本身的偏置b。调参的方式是采用梯度下降算法(Gradient descent),沿着梯度方向调整参数大小。w和b的梯度推导如下:

其中,z表示神经元的输入,表示激活函数。从以上公式可以看出,w和b的梯度跟激活函数的梯度成正比,激活函数的梯度越大,w和b的大小调整得越快,训练收敛得就越快。而神经网络常用的激活函数为sigmoid函数,该函数的曲线如下所示:

如图所示,实验2的初始输出值(0.98)对应的梯度明显小于实验1的输出值(0.82),因此实验2的参数梯度下降得比实验1慢。这就是初始的代价(误差)越大,导致训练越慢的原因。与我们的期望不符,即:不能像人一样,错误越大,改正的幅度越大,从而学习得越快。

可能有人会说,那就选择一个梯度不变化或变化不明显的激活函数不就解决问题了吗?图样图森破,那样虽然简单粗暴地解决了这个问题,但可能会引起其他更多更麻烦的问题。而且,类似sigmoid这样的函数(比如tanh函数)有很多优点,非常适合用来做激活函数,具体请自行google之。

2. 交叉熵代价函数

换个思路,我们不换激活函数,而是换掉二次代价函数,改用交叉熵代价函数:

其中,x表示样本,n表示样本的总数。那么,重新计算参数w的梯度:

其中(具体证明见附录):

因此,w的梯度公式中原来的被消掉了;另外,该梯度公式中的表示输出值与实际值之间的误差。所以,当误差越大,梯度就越大,参数w调整得越快,训练速度也就越快。同理可得,b的梯度为:

实际情况证明,交叉熵代价函数带来的训练效果往往比二次代价函数要好。

3. 交叉熵代价函数是如何产生的?

以偏置b的梯度计算为例,推导出交叉熵代价函数:

在第1小节中,由二次代价函数推导出来的b的梯度公式为:

为了消掉该公式中的,我们想找到一个代价函数使得:

即:

对两侧求积分,可得:

而这就是前面介绍的交叉熵代价函数。

附录:

sigmoid函数为:

可证:

原文地址:https://www.cnblogs.com/scarecrow-blog/p/11629726.html

时间: 2024-10-25 19:56:20

为什么用交叉熵代替二次代价函数的相关文章

信息量,熵,交叉熵,相对熵与代价函数

本文将介绍信息量,熵,交叉熵,相对熵的定义,以及它们与机器学习算法中代价函数的定义的联系.转载请保留原文链接:http://www.cnblogs.com/llhthinker/p/7287029.html 1. 信息量 信息的量化计算: 解释如下: 信息量的大小应该可以衡量事件发生的“惊讶程度”或不确定性: 如果有?告诉我们?个相当不可能的事件发?了,我们收到的信息要多于我们被告知某个很可能发?的事件发?时收到的信息.如果我们知道某件事情?定会发?,那么我们就不会接收到信息. 也就是说,信息量

二次代价函数、交叉熵(cross-entropy)、对数似然代价函数(log-likelihood cost)

二次代价函数 $C = \frac{1} {2n} \sum_{x_1,...x_n} \|y(x)-a^L(x) \|^2$ 其中,C表示代价函数,x表示样本,y表示实际值,a表示输出值,n表示样本的总数:整个的意思就是把n个y-a的平方累加起来,再除以2求一下均值. 为简单起见,先看下 一个样本 的情况,此时二次代价函数为:$C = \frac{(y-a)^2} {2}$ $a=\sigma(z), z=\sum w_j*x_j +b$  ,其中a就代表激活函数的输出值,这个符号$\sigm

BP神经网络——交叉熵作代价函数

Sigmoid函数 当神经元的输出接近 1时,曲线变得相当平,即σ′(z)的值会很小,进而也就使?C/?w和?C/?b会非常小.造成学习缓慢,下面有一个二次代价函数的cost变化图,epoch从15到50变化很小. 引入交叉熵代价函数 针对上述问题,希望对输出层选择一个不包含sigmoid的权值更新,使得 由链式法则,得到 由σ′(z) = σ(z)(1? σ(z))以及σ(z)=a,可以将上式转换成 对方程进行关于a的积分,可得 对样本进行平均之后就是下面的交叉熵代价函数 对比之前的输出层de

交叉熵代价函数(作用及公式推导)

转自:http://blog.csdn.net/u014313009/article/details/51043064,感谢分享! 交叉熵代价函数(Cross-entropy cost function)是用来衡量人工神经网络(ANN)的预测值与实际值的一种方式.与二次代价函数相比,它能更有效地促进ANN的训练.在介绍交叉熵代价函数之前,本文先简要介绍二次代价函数,以及其存在的不足. 1. 二次代价函数的不足 ANN的设计目的之一是为了使机器可以像人一样学习知识.人在学习分析新事物时,当发现自己

交叉熵代价函数

本文是<Neural networks and deep learning>概览 中第三章的一部分,讲machine learning算法中用得很多的交叉熵代价函数. 1.从方差代价函数说起 代价函数经常用方差代价函数(即采用均方误差MSE),比如对于一个神经元(单输入单输出,sigmoid函数),定义其代价函数为: 其中y是我们期望的输出,a为神经元的实际输出[ a=σ(z), where z=wx+b ]. 在训练神经网络过程中,我们通过梯度下降算法来更新w和b,因此需要计算代价函数对w和

神经网络代价函数与交叉熵

在此我们以MSE作为代价函数: 其中, C表示代价 函数 ,x表示样本, y表示实际值, 表示实际值, 表示实际值, a表示输出值, 表示输出值, n表示样本的总数.为简单起见 表示样本的总数.为简单起见 表示样本的总数. a=σ(z), z=∑W j*X j+bσ() 是激活函数 使用梯度下降法(Gradient descent)来调整权值参数的大小,权值w和偏置b的梯度推导如下: 其中,z表示神经元的输入,σ表示激活函数.w和b的梯度跟激活函数的梯度成正比,激活函数的梯度越大,w和b的大小调

均方误差和交叉熵损失函数比较

一.前言 在做神经网络的训练学习过程中,一开始,经常是喜欢用二次代价函数来做损失函数,因为比较通俗易懂,后面在大部分的项目实践中却很少用到二次代价函数作为损失函数,而是用交叉熵作为损失函数.为什么?一直在思考这个问题,这两者有什么区别,那个更好?下面通过数学的角度来解释下. 思考:我们希望我们损失函数能够做到,当我们预测的值跟目标值越远时,在修改参数时候,减去一个更大的值,做到更加快速的下降. 二.两种代价函数的表达式 二次代价损失函数: 交叉熵损失函数: 针对二分类来说,其中: ai第Xi个样

交叉熵损失函数

交叉熵损失是分类任务中的常用损失函数,但是是否注意到二分类与多分类情况下的交叉熵形式上的不同呢? 两种形式 这两个都是交叉熵损失函数,但是看起来长的却有天壤之别.为什么同是交叉熵损失函数,长的却不一样? 因为这两个交叉熵损失函数对应不同的最后一层的输出:第一个对应的最后一层是softmax,第二个对应的最后一层是sigmoid 先来看下信息论中交叉熵的形式 交叉熵是用来描述两个分布的距离的,神经网络训练的目的就是使 g(x) 逼近 p(x). softmax层的交叉熵 (x)是什么呢?就是最后一

2016.3.24 交叉熵

交叉熵 俗话说,千里之行,始于足下,在我踢球的时候,教练总是让我们练习基本功,其实感觉基本功才是重点,如果基本功不好,那么再怎么厉害的战术都不能够执行出来,基本功是发挥的基本和关键,对于网络来说,基本的感觉或者说基本的对于网络的数学感觉也是基本功. 那么对于一个简单的feedforward的普通的全链接的神经网络什么是基本功呢?我认为首先需要对激活函数有一个感觉,尤其是对于sigmoid,这是非线性的一个里程碑式的函数.对于这个重要问题,一定要深入理解各项基本特性.简单描述一下,这个函数再0附近