Python SQLAlchemy入门教程

本文将以Mysql举例,介绍sqlalchemy的基本用法。其中,Python版本为2.7,sqlalchemy版本为1.1.6。

一. 介绍

SQLAlchemy是Python中最有名的ORM工具。

关于ORM:

全称Object Relational Mapping(对象关系映射)。

特点是操纵Python对象而不是SQL查询,也就是在代码层面考虑的是对象,而不是SQL,体现的是一种程序化思维,这样使得Python程序更加简洁易读。

具体的实现方式是将数据库表转换为Python类,其中数据列作为属性,数据库操作作为方法。

优点:

  1. 简洁易读:将数据表抽象为对象(数据模型),更直观易读
  2. 可移植:封装了多种数据库引擎,面对多个数据库,操作基本一致,代码易维护
  3. 更安全:有效避免SQL注入

为什么要用sqlalchemy?

虽然性能稍稍不及原生SQL,但是操作数据库真的很方便!

二. 使用

概念和数据类型

概念

概念 对应数据库 说明
Engine 连接 驱动引擎
Session 连接池,事务 由此开始查询
Model 类定义
Column
Query 若干行 可以链式添加多个条件

常见数据类型

数据类型 数据库数据类型 python数据类型 说明
Integer int int 整形,32位
String varchar string 字符串
Text text string 长字符串
Float float float 浮点型
Boolean tinyint bool True / False
Date date datetime.date 存储时间年月日
DateTime datetime datetime.datetime 存储年月日时分秒毫秒等
Time time datetime.datetime 存储时分秒

使用步骤

创建数据库表

1.安装

pip install SQLalchemy

2. 创建连接

from sqlalchemy import create_engine

engine = create_engine("mysql://user:[email protected]/dbname?charset=uft8")

这行代码初始化创建了Engine,Engine内部维护了一个Pool(连接池)和Dialect(方言),方言来识别具体连接数据库种类。

创建好了Engine的同时,Pool和Dialect也已经创建好了,但是此时并没有真正与数据库连接,等到执行具体的语句.connect()等时才会连接到数据库。

create_engine还有其它可选的参数,比如:

engine = create_engine("mysql://user:[email protected]/dbname?charset=uft8",
                       echo=True,
                       pool_size=8,
                       pool_recycle=60*30
                       )
  1. echo: 当设置为True时会将orm语句转化为sql语句打印,一般debug的时候可用
  2. pool_size: 连接池的大小,默认为5个,设置为0时表示连接无限制
  3. pool_recycle: 设置时间以限制数据库多久没连接自动断开

3. 创建数据库表类(模型)

前面有提到ORM的重要特点,那么我们操作表的时候就需要通过操作对象来实现,现在我们来创建一个类,以常见的用户表举例:

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class Users(Base):
    __tablename__ = "users"

    id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True)
    email = Column(String(64))

    def __init__(self, name, email):
        self.name = name
        self.email = email

declarative_base()是sqlalchemy内部封装的一个方法,通过其构造一个基类,这个基类和它的子类,可以将Python类和数据库表关联映射起来。

数据库表模型类通过__tablename__和表关联起来,Column表示数据表的列。

4. 生成数据库表

Base.metadata.create_all(engine)

创建表,如果存在则忽略,执行以上代码,就会发现在db中创建了users表。

操作数据

表创建好了就是操作数据了,常见的操作增删改查,我们一一介绍。

session

sqlalchemy中使用session用于创建程序和数据库之间的会话,所有对象的载入和保存都需要通过session对象 。

通过sessionmaker调用创建一个工厂,并关联Engine以确保每个session都可以使用该Engine连接资源:

from sqlalchemy.orm import sessionmaker

# 创建session
DbSession = sessionmaker(bind=engine)
session = DbSession()

session的常见操作方法包括:

  1. flush:预提交,提交到数据库文件,还未写入数据库文件中
  2. commit:提交了一个事务
  3. rollback:回滚
  4. close:关闭

举个最简单的例子:

add_user = Users("test", "[email protected]")
session.add(add_user)
session.commit()

session.add()将会把Model加入当前session维护的持久空间(可以从session.dirty看到)中,直到commit时提交到数据库。

Q1:add之后如何直接返回对象的属性?

可以在add之后执行db.session.flush(),这样便可在session中get到对象的属性。

Q2:如何进行批量插入,性能比较?

批量插入共有以下几种方法,对它们的批量做了比较,分别是:

session.add_all() < bulk_save_object() < bulk_insert_mappings() < SQLAlchemy_core()

查询是最常用的一个操作了,举个最简单的查询例子:

users = session.query(Users).filter_by(id=1).all()
for item in users:
    print(item.name)

通常我们通过以上查询模式获取数据,需要注意的是,通过session.query()我们查询返回了一个Query对象,此时还没有去具体的数据库中查询,只有当执行具体的.all(),.first()等函数时才会真的去操作数据库。

其中,query有filter和filter_by两个过滤方法,上述例子也可写为:

users = session.query(Users).filter_by(Users.id == 1).all()

通常这两个方法都会用到的,所以一定要掌握它们的区别:

filter filter_by
支持所有比较运算符,相等比较用比较用== 只能使用"=","!="和"><"
过滤用类名.属性名 过滤用属性名
不支持组合查询,只能连续调用filter变相实现 参数是**kwargs,支持组合查询
支持and,or和in等

更新数据有两种方法,一种是使用query中的update方法:

session.query(Users).filter_by(id=1).update({'name': "Jack"})

另一种是操作对应的表模型:

users = session.query(Users).filter_by(name="Jack").first()
users.name = "test"
session.add(users)

这两种方式呢,一般批量更新的话我会选前者,而要对查询获取对象属性之后再更新的场景就需要使用后者。

和更新数据类似,删除数据也有两种方法,第一种:

delete_users = session.query(Users).filter(Users.name == "test").first()
if delete_users:
    session.delete(delete_users)
    session.commit()

第二种:

session.query(Users).filter(Users.name == "test").delete()
session.commit()

批量删除时推荐使用第二种。

以上,就是Python sqlalchemy的基本用法。

代码可参照:my github

原文地址:https://www.cnblogs.com/ybjourney/p/11832045.html

时间: 2024-10-21 23:46:03

Python SQLAlchemy入门教程的相关文章

Python爬虫入门教程:博客园首页推荐博客排行的秘密

1. 前言 虽然博客园注册已经有五年多了,但是最近才正式开始在这里写博客.(进了博客园才知道这里面个个都是人才,说话又好听,超喜欢这里...)但是由于写的内容都是软件测试相关,热度一直不是很高.看到首页的推荐博客排行时,心里痒痒的,想想看看这些大佬究竟是写了什么文章这么受欢迎,可以被推荐.所以用Python抓取了这100位推荐博客,简单分析了每个博客的文章分类,阅读排行榜,评论排行榜及推荐排行榜,最后统计汇总并生成词云.正好这也算是一篇非常好的Python爬虫入门教程了. 2. 环境准备 2.1

Python学习入门教程,字符串函数扩充详解

因有用户反映,在基础文章对字符串函数的讲解太过少,故写一篇文章详细讲解一下常用字符串函数.本文章是对:程序员带你十天快速入门Python,玩转电脑软件开发(三)中字符串函数的详解与扩充. 如果您想学习并参与本教程的完善与写作.请在下方讨论区,回复相关问题.一起完善本文章教程的书写. Python字符串常用函数. 声明字符串变量: str = ‘关注做全栈攻城狮,写代码也要读书,爱全栈,更爱生活.’ 下面所有字符串函数函数,是对变量str进行操作: 求字符串长度: 函数使用: 运行结果: 值得注意

Python基础入门教程,Python学习路线图

给大家整理的这套python学习路线图,按照此教程一步步的学习来,肯定会对python有更深刻的认识.或许可以喜欢上python这个易学,精简,开源的语言.此套教程,不但有视频教程,还有源码分享,让大家能真正打开python的大门,进入这个领域.现在互联网巨头,都已经转投到人工智能领域,而人工智能最好的编程语言就是python,未来前景显而易见.黑马程序员是国内最早开设人工智能的机构. 一.首先先推荐一个教程 8天深入理解python教程:http://pan.baidu.com/s/1kVNm

Python怎么样入门?Python基础入门教程

给大家整理的这套python学习路线图,按照此教程一步步的学习来,肯定会对python有更深刻的认识.或许可以喜欢上python这个易学,精简,开源的语言.此套教程,不但有视频教程,还有源码分享,让大家能真正打开python的大门,进入这个领域.现在互联网巨头,都已经转投到人工智能领域,而人工智能最好的编程语言就是python,未来前景显而易见.黑马程序员是国内最早开设人工智能的机构. 一.首先先推荐一个教程 8天深入理解python教程:http://pan.baidu.com/s/1kVNm

Python简单入门教程helloworld

Python 学习资源 推荐书籍: Python核心编程(第二版)(强烈推荐,建议有一定基础的看,或者看完简明Python教程再看) Python 基础教程 第二版 (入门,没有核心编程好,但也不错) 编写高质量代码:改善Python程序的91个建议 (进阶,有一定基础再看) 书籍下载: Python 教程(部分内容来源于网络, 历时一年多总结整理的,给刚刚入门的学习者的书籍) 如果愿意可以给予一定的赞助以支持此书的继续完善. 下载链接:http://pan.baidu.com/s/1mgifp

Python爬虫入门教程 2-100 妹子图网站爬取

前言 从今天开始就要撸起袖子,直接写Python爬虫了,学习语言最好的办法就是有目的的进行,所以,接下来我将用10+篇的博客,写爬图片这一件事情.希望可以做好. 为了写好爬虫,我们需要准备一个火狐浏览器,还需要准备抓包工具,抓包工具,我使用的是CentOS自带的tcpdump,加上wireshark ,这两款软件的安装和使用,建议你还是学习一下,后面我们应该会用到. 网络请求模块requests Python中的大量开源的模块使得编码变的特别简单,我们写爬虫第一个要了解的模块就是requests

Python爬虫入门教程 4-100 美空网未登录图片爬取

简介 上一篇写的时间有点长了,接下来继续把美空网的爬虫写完,这套教程中编写的爬虫在实际的工作中可能并不能给你增加多少有价值的技术点,因为它只是一套入门的教程,老鸟你自动绕过就可以了,或者带带我也行. 爬虫分析 首先,我们已经爬取到了N多的用户个人主页,我通过链接拼接获取到了 http://www.moko.cc/post/da39db43246047c79dcaef44c201492d/list.html 在这个页面中,咱们要找几个核心的关键点,发现平面拍摄点击进入的是图片列表页面. 接下来开始

Python NLP入门教程

本文简要介绍Python自然语言处理(NLP),使用Python的NLTK库.NLTK是Python的自然语言处理工具包,在NLP领域中,最常使用的一个Python库. 什么是NLP? 简单来说,自然语言处理(NLP)就是开发能够理解人类语言的应用程序或服务. 这里讨论一些自然语言处理(NLP)的实际应用例子,如语音识别.语音翻译.理解完整的句子.理解匹配词的同义词,以及生成语法正确完整句子和段落. 这并不是NLP能做的所有事情. NLP实现 搜索引擎: 比如谷歌,Yahoo等.谷歌搜索引擎知道

最详细的Python爬虫入门教程,一篇文章入门爬虫不是儿戏!

0×00 介绍 0×01 要求 0×02 你能学到什么? 0×03 知识补充 0×04 最简单的开始 0×05 更优雅的解决方案 0×06 url合法性判断 0×07 总结与预告 0×00 介绍 学习Python中有不明白推荐加入交流群 号:548377875 群里有志同道合的小伙伴,互帮互助, 群里有不错的学习教程! 爬虫技术是数据挖掘,测试技术的重要的组成部分,是搜索引擎技术的核心. 但是作为一项普通的技术,普通人同样可以用爬虫技术做很多很多的事情,比如:你想了解一下某网所有关于爬虫技术的文