6. 目标检测算法之Fast R-CNN算法详解(转)

6. 目标检测算法之Fast R-CNN算法详解(转)

原文链接:https://www.cnblogs.com/zyly/p/9246418.html

目录

  • 一 Fast R-CNN思想

    • 问题一:测试时速度慢
    • 问题二:训练时速度慢
    • 问题三:训练所需空间大
  • 二 算法简述
  • 三 算法详解
    • 1、ROI池化层
    • 2、训练
    • 3、训练样本
    • 4、损失函数
    • [8]目标检测(4)-Fast R-CNN


Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2015.

继2014年的RCNN之后,Ross Girshick在15年推出Fast RCNN,构思精巧,流程更为紧凑,大幅提升了目标检测的速度。在Github上提供了源码

之所以提出Fast R-CNN,主要是因为R-CNN存在以下几个问题:

  • 训练分多步。通过上一篇博文我们知道R-CNN的训练先要fine tuning一个预训练的网络,然后针对每个类别都训练一个SVM分类器,最后还要用regressors对bounding-box进行回归,另外region proposal也要单独用selective search的方式获得,步骤比较繁琐。
  • 时间和内存消耗比较大。在训练SVM和回归的时候需要用网络训练的特征作为输入,特征保存在磁盘上再读入的时间消耗还是比较大的。
  • 测试的时候也比较慢,每张图片的每个region proposal都要做卷积,重复操作太多。

虽然在Fast RCNN之前有提出过SPPnet算法来解决RCNN中重复卷积的问题,但是SPPnet依然存在和RCNN一样的一些缺点比如:训练步骤过多,需要训练SVM分类器,需要额外的回归器,特征也是保存在磁盘上。因此Fast RCNN相当于全面改进了原有的这两个算法,不仅训练步骤减少了,也不需要额外将特征保存在磁盘上。

基于VGG16的Fast RCNN算法在训练速度上比RCNN快了将近9倍,比SPPnet快大概3倍;测试速度比RCNN快了213倍,比SPPnet快了10倍。在VOC2012上的mAP在66%左右。

回到顶部

一 Fast R-CNN思想

Fast RCNN方法解决了RCNN方法三个问题:

问题一:测试时速度慢

RCNN一张图像内候选框之间大量重叠,提取特征操作冗余。 
本文将整张图像归一化后直接送入深度网络。在邻接时,才加入候选框信息,在末尾的少数几层处理每个候选框。

问题二:训练时速度慢

原因同上。 
在训练时,本文先将一张图像送入网络,紧接着送入从这幅图像上提取出的候选区域。这些候选区域的前几层特征不需要再重复计算。

问题三:训练所需空间大

RCNN中独立的分类器和回归器需要大量特征作为训练样本。 
本文把类别判断和位置精调统一用深度网络实现,不再需要额外存储。

回到顶部

二 算法简述

算法的主网络是VGG16

以下是训练的步骤:

  • 输入是224*224,经过5个卷积层和2个降采样层(这两个降采样层分别跟在第一和第二个卷积层后面)
  • 进入RoI Pooling层,该层的输入是conv5层的输出和P个候选区域region proposal。
  • 然后再经过两个都是output是4096的全连接层。
  • 最后分别经过output个数是21和84的两个全连接层(这两个全连接层是并列的,不是前后关系),前者是分类的输出,代表每个region proposal属于每个类别(21类)的得分,后者是回归的输出,代表每个region proposal的四个坐标。
  • 最后是两个损失层,分类的是softmaxWithLoss,输入是label和分类层输出的得分;回归的是SmoothL1Loss,输入是回归层的输出和target坐标及weight。

测试的过程: 
与训练基本相同,最后两个loss层要改成一个softmax层,输入是分类的score,输出概率。最后对每个类别采用NMS(non-maximun suppression)。

回到顶部

三 算法详解

Fast R-CNN的流程图如下,这个网络的输入是原始图片和候选区域,输出是分类类别和bbox回归值。对于原始图片中的候选框区域,和SPPNet中做法一样,都是将它映射到卷积特征的对应区域(即图中的RoI projection),然后输入到RoI pooling layer,可以得到一个固定大小的特征图。将这个特征图经过2个全连接层以后得到RoI的特征,然后将特征经过全连接层,使用softmax得到分类,使用回归得到边框回归。CNN的主体结构可以来自于AlexNet,也可以来自于VGGNet。

1、ROI池化层

这里唯一需要解释的就是RoI pooling layer。如果特征图(feature map)上的RoI 大小是h∗w">h?w(这里忽略了通道数),将这个特征图划分为h/H∗w/W">h/H?w/W个网格,每个网格大小为H*W,对每个网格做max pooling,这样得到pooling以后的大小就是H∗W">H?W(在文章中,VGG16网络使用H=W=7的参数,上图中绘制的是6x6的)。无论原始的RoI多大,最后都转化为7*7大小的特征图。本文将RoI池化为7*7的输出,其实这一层就是SPP的特例,SPP金字塔只有一层就是这样的。

h∗w">h/H∗w/W">H∗W">因此可以看出Fast RCNN主要有3个改进:

  • h∗w">h/H∗w/W">H∗W">卷积不再是对每个region proposal进行,而是直接对整张图像,这样减少了很多重复计算。
  • 原来RCNN是对每个region proposal分别做卷积,因为一张图像中有2000左右的region proposal,肯定相互之间的重叠率很高,因此产生重复计算。用ROI pooling进行特征的尺寸变换,因为全连接层的输入要求尺寸大小一样,因此不能直接把region proposal作为输入。
  • 将regressor放进网络一起训练,每个类别对应一个regressor,同时用softmax代替原来的SVM分类器。

h∗w">h/H∗w/W">H∗W">2、训练

网络的训练需要从下面几个方向考虑:1、训练样本是什么;2、损失函数是什么;3、如果提出了新的网络结构,网络结构的反向传播怎么做。此外,还可以关注一下超参数的选取方法,看看作者在超参数选取上有什么好的思路可以借鉴。

3、训练样本

从网络的前向传播可以看到,网络需要的输入是图片和region proposal,输出是类别和bbox,那么训练的图片每个候选区需要提前标注好类别和bbox。

作者使用层次抽样来选取训练图片。对应每个mini-batch而言,大小为128个region proposal(或者叫RoI)。先从训练图片中选取2张图片,每个图片的RoI中选取64个RoI,形成这128个RoI。这样网络前面的卷积计算是可以共享的,降低了训练的复杂度。64个RoI中,25%是有类别的(IoU>0.5,u≥1">IoU>0.5,u≥1),剩下75%是背景(IoU∈[0.1,0.5),u=0">IoU∈[0.1,0.5),u=0)。数据增强使用了水平翻转。测试的时候则每张图像大约2000个RoI。

IoU>0.5,u≥1">IoU∈[0.1,0.5),u=0">4、损失函数

IoU>0.5,u≥1">IoU∈[0.1,0.5),u=0">

将分类的loss和回归的loss整合在一起,其中分类采用log loss,即对真实分类(下图中的pu)的概率取负log,而回归的loss和R-CNN基本一样。分类层输出K+1维,表示K个类和1个背景类。

这是回归的loss,其中tu表示预测的结果,u表示类别。v表示真实的结果,即bounding box regression target。

参考文章

[1]目标检测:Fast R-CNN

[2]Fast RCNN算法详解

[3]Fast RCNN算法详解

[4]目标检测:SPP-net

[5]Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2015.

[6]基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN(强烈推荐)

[7]目标检测(3)-SPPNet

[8]目标检测(4)-Fast R-CNN

原文地址:https://www.cnblogs.com/orangestar/p/11625534.html

时间: 2024-12-09 06:14:23

6. 目标检测算法之Fast R-CNN算法详解(转)的相关文章

c?#?中 ?s?o?c?k?e?t? ?、?T?C?P?C?l?i?e?n?t?、?T?C?P?L?i?s?t?e?n?e?r? ?用?法?详?解

Visual C#.Net网络程序开发-Socket篇 Microsoft.Net Framework为应用程序访问Internet提供了分层的.可扩展的以及受管辖的网络服务,其名字空间System.Net和System.Net.Sockets包含丰富的类可以开发多种网络应用程序..Net类采用的分层结构允许应用程序在不同的控制级别上访问网络,开发人员可以根据需要选择针对不同的级别编制程序,这些级别几乎囊括了Internet的所有需要--从socket套接字到普通的请求/响应,更重要的是,这种分

搜索引擎算法研究专题五:TF-IDF详解

搜索引擎算法研究专题五:TF-IDF详解 2017年12月19日 ? 搜索技术 ? 共 1396字 ? 字号 小 中 大 ? 评论关闭 TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索与资讯探勘的常用加权技术.TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度.字词的重要性随著它在文件中出现的次数成正比增加,但同时会随著它在语料库中出现的频率成反比下降.TF-IDF加权的各种形式常被搜

3D目标检测&6D姿态估计之SSD-6D算法--by leona

最近的研究主要以6D检测为主,本篇介绍基于2D检测器SSD的3D检测器SSD-6D. 1)论文链接:https://arxiv.org/pdf/1711.10006.pdf   训练部分代码链接:https://github.com/wadimkehl/ssd-6d 2)介绍: 许多3D检测器都是基于视角的(view based),生成一系列离散的目标视角用于后续视频序列的特征计算.在测试过程中,从不同的离散视角对场景进行采样,然后计算特征,并与目标数据库匹配来建立训练视角和场景位置的对应.此处

Canny边缘检测算法原理及C语言实现详解(原创码字)

Canny算子是John Canny在1986年提出的,那年老大爷才28岁,该文章发表在PAMI顶级期刊上的(1986. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 8, 1986, pp. 679-698).老大爷目前在加州伯克利做machine learning,80-90年代视觉都是图像处理,现在做视觉都是机器

93、R语言教程详解

加载数据 > w<-read.table("test.prn",header = T) > w X.. X...1 1 A 2 2 B 3 3 C 5 4 D 5 > library(readxl) > dat<-read_excel("test.xlsx") > dat # A tibble: 4 x 2 `商品` `价格` <chr> <dbl> 1 A 2 2 B 3 3 C 5 4 D 5 &

python基础:\r的用法详解

1 import sys 2 import time 3 print("ab\rcd\ref") 4 5 for i in range(65,91): 6 s="\r{name:s}".format(name=chr(i)) 7 time.sleep(0.5) 8 sys.stdout.write(s) 第一个print输出: ef 第二个输出: A变到Z(没有换行,每次都是一个字母显示,下一个字母替换上一个字母) \r 默认表示将输出的内容返回到第一个指针,这样的

R语言数据结构详解

R有多种存储数据的对象类型.基本的类型可分为: 1.向量 向量中的数据必须拥有相同类型或模式(数值型.字符型.逻辑型):向量类似c语言中的数组:实例:>a<-c(1,2,3,4,5,6)>b<-c(“one”,”two”,”three”)>c<-c(TURE,FALSE,TRUE)标量是指只含一个元素的向量:实例:>e<-3 访问向量中的元素(向量中的元素从1开始,这点与数组不同):>a<-c(1,2,5,7,-5,4) >a[3][1]

经典回溯算法(八皇后问题)详解

八皇后问题,是一个古老而著名的问题,是回溯算法的典型例题.该问题是十九世纪著名的数学家高斯1850年提出: 在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或同一斜线上 (斜率为1),问有多少种摆法.高斯认为有76种方案. 1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果. 计算机发明后,有多种方法可以解决此问题. 算法思路:    首先我们分析一下问题的解,我们每取出一个皇后,放入一行,共有八种不同的放法

flink 实现ConnectedComponents 连通分量,增量迭代算法(Delta Iteration)实现详解

1.连通分量是什么? 首先需要了解什么是连通图.无向连通图.极大连通子图等概念,这些概念都来自数据结构-图,这里简单介绍一下. 下图是连通图和非连通图,都是无向的,这里不扩展有向图: 连通分量(connected component):无向图中的极大连通子图(maximal connected subgraph)称为原图的连通分量. 极大连通子图: 1.连通图只有一个极大连通子图,就是它本身.(是唯一的) 2.非连通图有多个极大连通子图.(非连通图的极大连通子图叫做连通分量,每个分量都是一个连通

视频目标检测

TCNN  静态图像中目标检测(rcnn,fast rcnn, faster rcnn, yolo, ssd 等) 上下文信息 使用图像检测算法将视频帧当做独立的图像来处理并没有充分利用整个视频的上下文信息.虽然说视频中可能出现任意类别的目标,但对于单个视频片段,只会出现比较少的几个类别,而且这几个类别之间有共现关系(出现船只的视频段中可能会有鲸鱼,但基本不可能出现斑马).所以,可以借助整个视频段上的检测结果进行统计分析:对所有检测窗口按得分排序,选出得分较高的类别,剩余那些得分较低的类别很可能