机器学习--支持向量机 (SVM)算法的原理及优缺点

一、支持向量机 (SVM)算法的原理

  支持向量机(Support Vector Machine,常简称为SVM)是一种监督式学习的方法,可广泛地应用于统计分类以及回归分析。它是将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面,分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。

  

  对于线性可分的支持向量机求解问题实际上可转化为一个带约束条件的最优化求解问题:

    推理过程:

          

                 结果:

                                                       

  对于线性不可分的支持向量机求解问题实际上可转化为一个带约束条件的soft-margin最优化求解问题:

                             

  算法优点:  

  (1)使用核函数可以向高维空间进行映射

  (2)使用核函数可以解决非线性的分类

  (3)分类思想很简单,就是将样本与决策面的间隔最大化

  (4)分类效果较好

  算法缺点

  (1)SVM算法对大规模训练样本难以实施

  (2)用SVM解决多分类问题存在困难

  (3)对缺失数据敏感,对参数和核函数的选择敏感  

二、代码实现

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC

iris = datasets.load_iris()

X = iris.data
y = iris.target

X = X[y<2,:2]
y = y[y<2]

plt.scatter(X[y==0,0], X[y==0,1], color=‘red‘)
plt.scatter(X[y==1,0], X[y==1,1], color=‘blue‘)

standardScaler = StandardScaler()
standardScaler.fit(X)
X_standard = standardScaler.transform(X)

svc = LinearSVC(C=1e9)
svc.fit(X_standard, y)

def plot_svc_decision_boundary(model, axis):

    x0, x1 = np.meshgrid(
        np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1),
        np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1, 1),
    )
    X_new = np.c_[x0.ravel(), x1.ravel()]

    y_predict = model.predict(X_new)
    zz = y_predict.reshape(x0.shape)

    from matplotlib.colors import ListedColormap
    custom_cmap = ListedColormap([‘#EF9A9A‘,‘#FFF59D‘,‘#90CAF9‘])

    plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)

    w = model.coef_[0]
    b = model.intercept_[0]

    # w0*x0 + w1*x1 + b = 0
    # => x1 = -w0/w1 * x0 - b/w1
    plot_x = np.linspace(axis[0], axis[1], 200)
    up_y = -w[0]/w[1] * plot_x - b/w[1] + 1/w[1]
    down_y = -w[0]/w[1] * plot_x - b/w[1] - 1/w[1]

    up_index = (up_y >= axis[2]) & (up_y <= axis[3])
    down_index = (down_y >= axis[2]) & (down_y <= axis[3])
    plt.plot(plot_x[up_index], up_y[up_index], color=‘black‘)
    plt.plot(plot_x[down_index], down_y[down_index], color=‘black‘)

plot_svc_decision_boundary(svc, axis=[-3, 3, -3, 3])
plt.scatter(X_standard[y==0,0], X_standard[y==0,1])
plt.scatter(X_standard[y==1,0], X_standard[y==1,1])

输出结果:

原文地址:https://www.cnblogs.com/lsm-boke/p/11761534.html

时间: 2024-10-11 08:54:25

机器学习--支持向量机 (SVM)算法的原理及优缺点的相关文章

机器学习--线性回归算法的原理及优缺点

一.线性回归算法的原理 回归是基于已有数据对新的数据进行预测,比如预测股票走势.这里我们主要讲简单线性回归.基于标准的线性回归,可以扩展出更多的线性回归算法. 假设我们找到了最佳拟合的直线方程 : , 则对每一个样本点    ,根据我们的直线方程,预测值为:,其对应的真值为   . 我们希望    和   的差距尽量小,这里我们用   表达   和  的距离, 考虑所有样本则为: 我们的目标是使   尽可能小,而    ,所以我们要找到  a .b  ,使得  尽可能小. 被称为损失函数或效用函

机器学习笔记—svm算法(上)

本文申明:本文原创,如转载请注明原文出处. 引言:上一篇我们讲到了logistic回归,今天我们来说一说与其很相似的svm算法,当然问题的讨论还是在线性可分的基础下讨论的. 很多人说svm是目前最好的分类器,那我们就来看看我们的svm好在哪里. 一:初识svm 问题:用一条直线把下图的圆球和五角星分离开来. 解答:有N种分法,如下图: 附加题:找出最佳分类? 解答:如图: Exe me?鬼知道哪一条是最佳?? 等等这个最佳分类是不是等价于,地主让管家给两个儿子分地,是不是只要让两家之间一样多就可

机器学习笔记_PRML_Adaboost 算法的原理与推导

转自:http://blog.csdn.net/v_july_v/article/details/40718799 Adaboost 算法的原理与推导 1 Adaboost的原理 1.1 Adaboost是什么 AdaBoost,是英文"Adaptive Boosting"(自适应增强)的缩写,由Yoav Freund和Robert Schapire在1995年提出.它的自适应在于:前一个基本分类器分错的样本会得到加强,加权后的全体样本再次被用来训练下一个基本分类器.同时,在每一轮中加

吴裕雄 python 机器学习——支持向量机SVM非线性分类SVC模型

import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm from sklearn.model_selection import train_test_split def load_data_classfication(): ''' 加载用于分类问题的数据集 ''' # 使用 scikit-learn 自带的 iris 数据集 iris=datasets.lo

机器学习--K近邻 (KNN)算法的原理及优缺点

一.KNN算法原理 K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法. 它的基本思想是: 在训练集中数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前K个数据,则该测试数据对应的类别就是K个数据中出现次数最多的那个分类. KNN算法的描述: (1)计算测试数据与各个训练数据之间的距离: (2)按照距离的递增关系进行排序: (3)选取距离最小的K个点: (4)确定前K个点所在类别的出现频率   (5

机器学习——支持向量机SVM在R中的实现

支持向量机是一个相对较新和较先进的机器学习技术,最初提出是为了解决二类分类问题,现在被广泛用于解决多类非线性分类问题和回归问题.继续阅读本文,你将学习到支持向量机如何工作,以及如何利用R语言实现支持向量机. 支持向量机如何工作? 简单介绍下支持向量机是做什么的: 假设你的数据点分为两类,支持向量机试图寻找最优的一条线(超平面),使得离这条线最近的点与其他类中的点的距离最大.有些时候,一个类的边界上的点可能越过超平面落在了错误的一边,或者和超平面重合,这种情况下,需要将这些点的权重降低,以减小它们

机器学习——随机森林算法及原理

1. 随机森林使用背景 1.1 随机森林定义 随机森林是一种比较新的机器学习模型.经典的机器学习模型是神经网络,有半个多世纪的历史了.神经网络预测精确,但是计算量很大.上世纪八十年代Breiman等人发明分类树的算法(Breiman et al. 1984),通过反复二分数据进行分类或回归,计算量大大降低.2001年Breiman把分类树组合成随机森林(Breiman 2001a),即在变量(列)的使用和数据(行)的使用上进行随机化,生成很多分类树,再汇总分类树的结果.随机森林在运算量没有显著提

机器学习——支持向量机(SVM)之核函数(kernel)

对于线性不可分的数据集,可以利用核函数(kernel)将数据转换成易于分类器理解的形式. 如下图,如果在x轴和y轴构成的坐标系中插入直线进行分类的话, 不能得到理想的结果,或许我们可以对圆中的数据进行某种形式的转换,从而得到某些新的变量来表示数据.在这种表示情况下,我们就更容易得到大于0或者小于0的测试结果.在这个例子中,我们将数据从一个特征空间转换到另一个特征空间,在新的空间下,我们可以很容易利用已有的工具对数据进行处理,将这个过程称之为从一个特征空间到另一个特征空间的映射.在通常情况下,这种

支持向量机(SVM)算法