Irrelevant Elements UVA-1635 (二项式定理)

vjudge链接

原题链接

乍一看似乎没什么思路,但是写几个简单的例子之后规律就变得很明显。
比如当 n=5 时,每一步计算后的结果如下:

a1
a1+a2
a1+2a2+a3
a1+3a2+3a3+a4
a1+4a2+6a3+4a4+a5

显然系数“1, 4, 6, 4, 1”就是杨辉三角第五行。
故某一项的系数是否是题中 m 的倍数,就决定了最终得到的数除以 n 的余数和那一项是否有关。

二项式定理:

从中很容易得到前后两项的关系 C(n, k)=(n-k+1)/k*C(n, k-1) 。但是单纯用这个公式暴力得到每个系数一定会导致溢出,故需要运用唯一分解定理分别存储每个系数的素因数和指数。

一般的代码不难给出,但是一直TLE。最后发觉应该先分解 m ,再得到 m 的素因数在各个 C(n,k) 中的指数,若指数过小则可以提前结束当前的分解。由于 m>1 ,可以忽略 n==k 和 n==0 的情况。

我的 AC 代码如下,最初是用 ANSI C 写的,一步一步改过来,故非常不简洁。其中用 map 存储素因数,其中元素 -1 用来作为该项是否能被 m 整除的 flag。

/*
 *lang C++ 5.3.0
 *user Weilin_C
*/
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cstdio>
#include <cmath>
#include <iostream>
#include <iomanip>
#include <algorithm>
#include <sstream>
#include <vector>
#include <map>
//#include <unordered_map>
#include <set>
#include <list>
#include <queue>

//每个数用map分质因数存储
//质数用素数筛 2-1000000000, MAXM=1000000
#define MAXM 1000000
#define MAXN 100000+5
using namespace std;

map <int, int> sta[MAXN], mm;
int pos[MAXN];
int prime[MAXM+1];

void mtomap (map<int, int> *ma, int n, int p)
{   //解码m n: 解码的数 p: 数n的个数
    int num=n;
    for (int i=2; i<=MAXM && num>0; i++) {
        if (!prime[i]) {
            while (num%i==0 && num>0) {
                num/=i;
                (*ma).insert(pair<int, int>(i, 0));
                (*ma)[i]+=p;
            }
        }
    }
    if (num>1) (*ma).insert(pair<int, int>(num, 1));

    return;
}

void ntomap (map<int, int> *ma, int n, int p)
{   //用于逐个解码第n行的杨辉三角 n: 解码的数 p: 数n的个数
    map <int, int>::iterator it;
    int num=n, t;
    if (n<2) return;
    for (it=mm.begin(); it!=mm.end(); it++) {
        t=it->first;
        if (t<2) continue;
        (*ma).insert(pair<int, int>(t, 0));
        while (num%t==0 && num>0) {
            num/=t;
            (*ma)[t]+=p;
        }
        if ((*ma)[t]<it->second) (*ma)[-1]=0;
    }

    return;
}

int judge(map<int, int> *ma)
{   //是否为0或1
    int flag=0;
    map <int, int>::iterator it;
    for (it=(*ma).begin(); it!=(*ma).end(); it++)
        if (it->second!=0 && it->first!=-1) {
            flag=1;
            break;
        }
    return flag;
}

int main()
{
    int m, n;

    //freopen("input.txt", "r", stdin);
    //freopen("output.txt", "w", stdout);

    /* C(n, k) = (n-k+1)/k * C(n, k-1) */

    for (int i=2; i<=sqrt(MAXM+1); i++) {
        if (prime[i]) continue;
        for (int j=i+i; j<=MAXM; j+=i) prime[j]=1;
    }

    while (scanf("%d%d", &n, &m)==2) {  //n: 杨辉三角层数
        //printf("%d %d\n", n, m);
        for (int i=0; i<=n; i++) if (!sta[i].empty()) sta[i].clear();
        mm.clear();
        sta[0][m]=0;
        sta[0][-1]=0;

        mtomap(&mm, m, 1);

        map <int, int>::iterator it;
        for (int i=1; i<n; i++) {
            for (it=sta[i-1].begin(); it!=sta[i-1].end(); it++) sta[i][it->first]=it->second;
            sta[i][-1]=1;
            ntomap(&sta[i], n-i, 1);
            ntomap(&sta[i], i, -1);
        }

        pos[0]=0;
        int ans=0;
        for (int i=0; i<n; i++) {
            if (sta[i][-1] && judge(&sta[i])) {
                ans++;
                pos[++pos[0]]=i+1;
            }
        }
        printf("%d\n", ans);
        int f=0;
        for (int i=1; i<=pos[0]; i++) {
            if (f) putchar(' ');
            else f=1;
            printf("%d", pos[i]);
        }
        putchar('\n');
    }

    return 0;
}

by SDUST weilinfox
本文链接:https://www.cnblogs.com/weilinfox/p/12241600.html

原文地址:https://www.cnblogs.com/weilinfox/p/12241600.html

时间: 2024-10-31 06:02:51

Irrelevant Elements UVA-1635 (二项式定理)的相关文章

UVa 1635 - Irrelevant Elements-[分解质因数]

Young cryptoanalyst Georgie is investigating different schemes of generating random integer numbers ranging from 0 to m − 1. He thinks that standard random number generators are not good enough, so he has invented his own scheme that is intended to b

UVa1635 - Irrelevant Elements(质因数分解)

Young cryptoanalyst Georgie is investigating different schemes of generating random integer numbers ranging from 0 to m - 1. He thinks that standard random number generators are not good enough, so he has invented his own scheme that is intended to b

POJ2167 Irrelevant Elements

Time Limit: 5000MS   Memory Limit: 65536KB   64bit IO Format: %lld & %llu Description Young cryptoanalyst Georgie is investigating different schemes of generating random integer numbers ranging from 0 to m - 1. He thinks that standard random number g

组合数杨辉三角(Irrelevant Elements uva1635)

Young cryptoanalyst Georgie is investigating different schemes of generating random integer numbersranging from 0 to m - 1. He thinks that standard random number generators are not good enough, sohe has invented his own scheme that is intended to bri

POJ 2167 Irrelevant Elements 质因数分解

Irrelevant Elements Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 2231   Accepted: 550 Case Time Limit: 2000MS Description Young cryptoanalyst Georgie is investigating different schemes of generating random integer numbers ranging from

uva 1635 - Irrelevant Elements

链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&category=850&problem=4510 题意:一组数字a1,a2,a3.......,不断的相邻数成一组求和形成新的一组,直到最后不可以在合并为止,问最后的答案对m取模与哪些初始的项的无关? 题解:显然无关就是要求某一项在最终的数列中的系数是m的倍数,并且显然最终系列的系数是二项分布

UVa 1635 Irrelevant Elements (唯一分解定理 || 组合数学)

题目 题目大意 对于给定的\(n\)个数\(a_1\), \(a_2\), ···, \(a_n\), 依次求出相邻两数之和, 将得到一个新数列.重复上述操作, 最后结果将变成一个数.问这个数除以\(m\)的余数将与哪些数无关? 例如\(n = 3\), \(m = 2\)时, 第一次求和得到\(a_1 + a_2\), \(a_2 + a_3\), 再求和得到\(a_1 + 2a_2 + a_3\), 它除以\(2\)的余数和\(a_2\)无关.\(1 ≤ n ≤ 10^5\), \(2 ≤

UVa 1635 无关的元素(唯一分解定理+二项式定理)

https://vjudge.net/problem/UVA-1635 题意: 给定n个数a1,a2,...an,依次求出相邻两数之和,将得到一个新数列.重复上述操作,最后结果将变成一个数.问这个数除以m的余数与哪些数无关?例如n=3,m=2时,第一次求和得到a1+a2,a2+a3,再求和得到a1+2a2+a3,它除以2的余数和a2无关. 思路: 如果有n个数,最后结果就是杨辉三角的第n-1行.这样算出每一项的系数是很容易的,但是n很大,系数到最后很大.所以直接C%m的话不行. 有个整除的条件:

【UVa1635】Irrelevant Elements - 唯一分解定理

题意 给你 \(n\) 个数,每次求出相邻两个数的和组成新数列.经过 \(n-1\) 次操作后,得到一个数.求这个数 \(mod \ m\) 与哪些项无关. 如:当 \(m=2 \ , \ n=2\) 时 \(a_1 \ , \ a_2 , a_3 \Rightarrow a_1+a_2 \ , \ a_2+a_3 \Rightarrow \ a_1+2a_2+a_3\) 则与 \(a_2\) 无关 思路 由二项式定理知道结果系数是杨辉三角的第 \(n-1\) 行,问题转换成判断有多少个 \(C