Luogu_P1072 Hankson 的趣味题 gcd

Luogu_P1072 Hankson 的趣味题

### gcd

题目链接
就是求
\(gcd(x,a0)=a1\)
\(lcm(x,b0)=b1\)
的\(x\)合法的数量
首先有一个很显然的等式
\(gcd(x/a1,a0/a1)=1\)
可以根据\(gcd\)的性质证出来
那么就剩下另一个等式了
\(lcm(x,b0)=x*b0/gcd(x,b0)\)
\(gcd(x,b0)=x*b0/b1\)
再根据第一个性质
\(gcd(x/(x*b0/b1),b0/(x*b0/b1))=gcd(b1/b0,b1/x)=1\)
其实上面的式子就等同于:
\(gcd(x/a1,a0/a1)=1\)
\(gcd(b1/b0,b1/x)=1\)
而且我们还知道x是b1的约数
那么就可以枚举b1约数然后验证符不符合两个式子
如果符合那么\(ans++\)



代码如下:

#include<bits/stdc++.h>
using namespace std;
int n,ans=0;
inline int gcd(int x,int y){
    return y ? gcd(y,x%y) : x;
}
int main()
{
    scanf("%d",&n);
    while(n--){
        int a0,a1,b0,b1;ans=0;
        scanf("%d%d%d%d",&a0,&a1,&b0,&b1);
        for(int x=1;x*x<=b1;x++) if(!(b1%x)){
            if(x%a1==0 && gcd(x/a1,a0/a1)==1 && gcd(b1/b0,b1/x)==1) ans++;
            int y=b1/x;
            if(x==y) continue;
            if(y%a1==0 && gcd(y/a1,a0/a1)==1 && gcd(b1/b0,b1/y)==1) ans++;
        }
        printf("%d\n",ans);
    }
    return 0;
}

原文地址:https://www.cnblogs.com/ChrisKKK/p/11693217.html

时间: 2024-10-31 01:30:42

Luogu_P1072 Hankson 的趣味题 gcd的相关文章

2009 Hankson 的趣味题

Hankson 的趣味题 题目描述 Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题.今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数.现在Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数a0,a1,b0,b1,设某未知正整数x 满足:1. x 和a0 的最大公约数是

1172 Hankson 的趣味题[数论]

1172 Hankson 的趣味题 2009年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题.今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数.现在Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个

luogu P1072 Hankson的趣味题

题目链接 luogu P1072 Hankson 的趣味题 题解 啊,还是noip的题好做 额,直接推式子就好了 \(gcd(x,a_0)=a_1=gcd(\frac{x}{a_1},\frac{a_0}{a_1})\) 额....上面这个式子似乎没用,看b的 \(lcm(x,b_0)=\frac{x*b_0}{gcd(x,b_0)}=b1\) 那么\(gcd(x,b_0)=\frac{x*b_0}{b_1}\) \(gcd(\frac{b_1}{b_0},\frac{b_1}{x})=1\)

一本通1626【例 2】Hankson 的趣味题

1626:[例 2]Hankson 的趣味题 题目描述 Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题.今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数.现在Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数a0,a1,b0,b1,设某未知正整数x 满足:1.x 和a

【luogu1072】Hankson 的趣味题 [数学]

P1072 Hankson 的趣味题 枚举gcd(x,b0)判断 1 #include<iostream> 2 #include<cstdio> 3 #include<queue> 4 #include<cstring> 5 #include<cmath> 6 #include<stack> 7 #include<algorithm> 8 using namespace std; 9 #define ll long lon

P1072 Hankson 的趣味题

题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解了如何求两个正整数 c1 和 c2 的最大公约数和最小公倍数.现 在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公 倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数 a0,a1,b0,b1,设某未知正整 数 x 满足: 1. x 和 a0 的最大公约

NOIp2009 Hankson 的趣味题

题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解了如何求两个正整数 c1 和 c2 的最大公约数和最小公倍数.现在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个"求公约数"和"求公倍数"之类问题的"逆问题",这个问题是这样的:已知正整数 a0,a1,b0,b1,设某未知正整数

Hankson 的趣味题(codevs 1172)

题目描述 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题.今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数.现在Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数a0,a1,b0,b1,设某未知正整数x 满足:1. x 和a0 的最大公约数是a

NOIP2009 Hankson的趣味题

题目描述 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题.今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数.现在Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数a0,a1,b0,b1,设某未知正整数x 满足:1. x 和a0 的最大公约数是a