使用 Python 开始你的机器学习之旅【转】

转自:https://linux.cn/article-8582-1.html

编译自:https://opensource.com/article/17/5/python-machine-learning-introduction 作者: Michael J. Garbade
原创:LCTT https://linux.cn/article-8582-1.html
译者: ucasFL
本文地址:https://linux.cn/article-8582-1.html

2017-06-07 09:12   
收藏: 1

本文导航

机器学习是你的简历中必需的一门技能。我们简要概括一下使用 Python 来进行机器学习的一些步骤。

你想知道如何开始机器学习吗?在这篇文章中,我将简要概括一下使用 Python 来开始机器学习的一些步骤。Python 是一门流行的开源程序设计语言,也是在人工智能及其它相关科学领域中最常用的语言之一。机器学习简称 ML,是人工智能的一个分支,它是利用算法从数据中进行学习,然后作出预测。机器学习有助于帮助我们预测我们周围的世界。

从无人驾驶汽车到股市预测,再到在线学习,机器学习通过预测来进行自我提高的方法几乎被用在了每一个领域。由于机器学习的实际运用,目前它已经成为就业市场上最有需求的技能之一。另外,使用 Python 来开始机器学习很简单,因为有大量的在线资源,以及许多可用的 Python 机器学习库

你需要如何开始使用 Python 进行机器学习呢?让我们来总结一下这个过程。

提高你的 Python 技能

由于 Python 在工业界和科学界都非常受欢迎,因此你不难找到 Python 的学习资源。如果你是一个从未接触过 Python 的新手,你可以利用在线资源,比如课程、书籍和视频来学习 Python。比如下面列举的一些资源:

安装 Anaconda

下一步是安装 Anacona。有了 Anaconda ,你将可以开始使用 Python 来探索机器学习的世界了。Anaconda 的默认安装库包含了进行机器学习所需要的工具。

基本的机器学习技能

有了一些基本的 Python 编程技能,你就可以开始学习一些基本的机器学习技能了。一个实用的学习方法是学到一定技能便开始进行练习。然而,如果你想深入学习这个领域,那么你需要准备投入更多的学习时间。

一个获取技能的有效方法是在线课程。吴恩达的 Coursera 机器学习课程 是一个不错的选择。其它有用的在线训练包括:

你也可以在 LiveEdu.tv 上观看机器学习视频,从而进一步了解这个领域。

学习更多的 Python 库

当你对 Python 和机器学习有一个好的感觉之后,可以开始学习一些开源的 Python 库。科学的 Python 库将会使完成一些简单的机器学习任务变得很简单。然而,选择什么库是完全主观的,并且在业界内许多人有很大的争论。

一些实用的 Python 库包括:

  • Scikit-learn :一个优雅的机器学习算法库,可用于数据挖掘和数据分析任务。
  • Tensorflow :一个易于使用的神经网络库。
  • Theano : 一个强大的机器学习库,可以帮助你轻松的评估数学表达式。
  • Pattern : 可以帮助你进行自然语言处理、数据挖掘以及更多的工作。
  • Nilearn :基于 Scikit-learn,它可以帮助你进行简单快速的统计学习。

探索机器学习

对基本的 Python、机器学习技能和 Python 库有了一定理解之后,就可以开始探索机器学习了。接下来,尝试探索一下 Scikit-learn 库。一个不错的教程是 Jake VanderPlas 写的 Scikit-learn 简介

然后,进入中级主题,比如 K-均值聚类算法简介、线性回归、决策树和逻辑回归。

最后,深入高级机器学习主题,比如向量机和复杂数据转换。

就像学习任何新技能一样,练习得越多,就会学得越好。你可以通过练习不同的算法,使用不同的数据集来更好的理解机器学习,并提高解决问题的整体能力。

使用 Python 进行机器学习是对你的技能的一个很好的补充,并且有大量免费和低成本的在线资源可以帮助你。你已经掌握机器学习技能了吗?可以在下面留下你的评论,或者提交一篇文章来分享你的故事。

(题图:opensource.com)



作者简介:

Michael J. Garbade 博士是旧金山 LiveEdu
Inc(Livecoding.tv)的创始人兼首席执行官。Livecoding.tv
是世界上观看工程师直播编代码最先进的直播平台。你可以通过观看工程师们写网站、移动应用和游戏,来将你的技能提升到一个新的水平。MichaelJ.
Garbade 博士拥有金融学博士学位,并且是一名自学成才的工程师,他喜欢 Python、Django、Sencha Touch 和视频流。

时间: 2024-09-30 05:32:05

使用 Python 开始你的机器学习之旅【转】的相关文章

Python大数据与机器学习之NumPy初体验

本文是Python大数据与机器学习系列文章中的第6篇,将介绍学习Python大数据与机器学习所必须的NumPy库. 通过本文系列文章您将能够学到的知识如下: 应用Python进行大数据与机器学习 应用Spark进行大数据分析 实现机器学习算法 学习使用NumPy库处理数值数据 学习使用Pandas库进行数据分析 学习使用Matplotlib库进行Python绘图 学习使用Seaborn库进行统计绘图 使用Plotly库进行动态可视化 使用SciKit-learn处理机器学习任务 K-Means聚

Python是人工智能和机器学习的最佳编程语言,证据在此!

人工智能与机器学习是IT行业的新兴热门领域.虽然有关其发展安全性的讨论日益增多,但开发人员仍在不断扩展人工智能的能力与存储容量.如今,人工智能已远远地超出科幻小说中的构想,成为了现实.人工智能技术广泛应用于处理分析大量数据,由于其处理的工作量及工作强度明显提高,因此这些工作今后无需人工操作. 例如,人工智能被应用于分析学中以建立预测,帮助人们创建有力策略和更为有效的解决办法.金融科技公司将人工智能应用于投资平台中,进行市场调查并预测如何实现投资收益最大化.旅游业使用人工智能发送个性化建议,或是开

基于 Python 和 Scikit-Learn 的机器学习介绍

Reference:http://mp.weixin.qq.com/s?src=3&timestamp=1474985436&ver=1&signature=at24GKibwNNoE9VsETitURyMHzXYeytp1MoUyAFx-2WOZTdPelAdJBv9nkMPyczdr4riYdUZWOaUInIFOxWELVDugvJJxpeEgp5KWDFFtwR8VYalYfPvdWdrmi*Qoq9shyPnROU3Tch32ieV9V8clw== 现在,很多人想开发高效

windows下64位python的安装及机器学习相关包的安装(实用)

开通博客已久,想了好久决定写个基础的安装教程,望后人少走弯路,也借此希望跟大家多多交流.文中给出的链接默认是基于对python2.7的前提下的包. 1.首先下载64位Python包,进行安装(默认python2.7.6) 下载链接:https://www.baidu.com/link?url=i1EA542Pi-dNF0hi9veKLT6dDlsur0X0n3H81kEOUxwwlnbNvyRiwu8jP_E9Bwi5AjuqDK1isRmuYd9H3SdecbdIOnQiTwAv6t8uTUQ

Python语言下的机器学习库

Python是最好的编程语言之一,在科学计算中用途广泛:计算机视觉.人工智能.数学.天文等.它同样适用于机器学习也是意料之中的事. 当然,它也有些缺点:其中一个是工具和库过于分散.如果你是拥有unix思维(unix-minded)的人,你会觉得每个工具只做一件事并且把它做好是非常方便的.但是你也需要知道不同库和工具的优缺点,这样在构建系统时才能做出合理的决策.工具本身不能改善系统或产品,但是使用正确的工具,我们可以工作得更高效,生产率更高.因此了解正确的工具,对你的工作领域是非常重要的. 这篇文

python数据分析&挖掘,机器学习环境配置

目录 一.什么是数据分析 1.这里引用网上的定义: 2.数据分析发展与组成 3.特点 二.python数据分析环境及各类常用分析包配置 1.处理的数据类型 2.为什么选择python 三.python数据分析环境安装 1.Ipython 2.Jupyter 3.Anaconda安装器 4.Jupyter与集成开发环境与文本编辑器 三.常用数据分析包 1.NumPy 2.pandas 一.什么是数据分析 1.这里引用网上的定义: ???????数据分析是指用适当的统计分析方法对收集来的大量数据进行

我的机器学习之旅(四):回归与工程应用

内容:线性回归:逻辑回归,应用场景. 一.线性回归 有监督学习,根据学习样本{x->y},学习一个映射f:X->Y(线性相关),输出预测结果y_i.最简单的例子:y=ax+b 重要组成:训练数据集 training set, 学习算法 learning algorithm, 损失函数 loss function. 训练数据集:x-->y的对应数据 损失函数cost: 权衡训练到的x-y的映射的好坏,最小化这个损失函数. 比较常见的最小二乘法,一般为凸函数 学习算法:梯度下降,逐步最小化损

零基础入门到精通:Python大数据与机器学习之Pandas-数据操作

在这里还是要推荐下我自己建的Python开发学习群:483546416,群里都是学Python开发的,如果你正在学习Python ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有Python软件开发相关的),包括我自己整理的一份2018最新的Python进阶资料和高级开发教程,欢迎进阶中和进想深入Python的小伙伴. 同时还要大数据学习群:784557197 实战练习 在Jupyter Notebook上执行以下代码: import pandas as pd df = pd.Data

我的机器学习之旅(六):决策树

决策树概念: 分类决策树模型是一种描述对实例进行分类的树形结构.决策树由结点和有向边组成.结点有两种类型:内部节点和叶节点,内部节点表示一个特征或属性,叶节点表示一个类. 分类的时候,从根节点开始,对实例的某一个特征进行测试,根据测试结果,将实例分配到其子结点:此时,每一个子结点对应着该特征的一个取值.如此递归向下移动,直至达到叶结点,最后将实例分配到叶结点的类中. 例如判断某款物品的潜在买家: 决策树可以看成一个if-then规则的集合:由决策树的根结点到叶结点的每一条路径构建一条规则:路径上