Frequent values
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 13317 | Accepted: 4894 |
Description
You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In addition to that, you are given several queries consisting of indices i and j (1
≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integers ai , ... , aj.
Input
The input consists of several test cases. Each test case starts with a line containing two integers n and q (1 ≤ n, q ≤ 100000). The next line contains n integers a1 , ... , an (-100000
≤ ai ≤ 100000, for each i ∈ {1, ..., n}) separated by spaces. You can assume that for each i ∈ {1, ..., n-1}: ai ≤ ai+1. The following q lines contain one query each, consisting of two
integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the
query.
The last test case is followed by a line containing a single 0.
Output
For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range.
Sample Input
10 3 -1 -1 1 1 1 1 3 10 10 10 2 3 1 10 5 10 0
Sample Output
1 4 3
Source
详细参考刘汝佳的算法训练指南第198页,看了就懂了。
AC代码:
#include<stdio.h> #include<iostream> #include<stdio.h> #include<algorithm> using namespace std; int a[100010]; int val[100010],counter[100010]; int num[100010],Left[100010],Right[100010]; int d[100100][110]; int n,q; void RMQ_init(){ int i,j,k; int tmp; val[1]=a[1]; k=num[1]=Left[1]=1; for(i=2;i<=n;i++){ if(a[i]!=val[k]){ Right[k]=i-1; counter[k]=Right[k]-Left[k]+1; k++; Left[k]=i; val[k]=a[i]; } num[i]=k; } Right[k]=n; counter[k]=Right[k]-Left[k]+1; for(i=1;i<=k;i++) d[i][0]=counter[i]; for(j=1;(1<<j)<=k;j++) for(i=1;i+(1<<j)-1<=k;i++){ d[i][j]=max(d[i][j-1],d[i+(1<<(j-1))][j-1]); } } int RMQ(int x,int y){ int k=0; while((1<<(k+1))<=y-x+1) k++; return max(d[x][k],d[y-(1<<k)+1][k]); } int main(){ while(scanf("%d",&n)!=EOF){ if(n==0) break; scanf("%d",&q); for(int i=1;i<=n;i++){ scanf("%d",&a[i]); } RMQ_init(); while(q--){ int x,y; scanf("%d%d",&x,&y); if(num[x]==num[y]){ printf("%d\n",y-x+1); } else{ int ans; ans=max(Right[num[x]]-x+1,y-Left[num[y]]+1); if(num[x]+1<=num[y]-1){ ans=max(ans,RMQ(num[x]+1,num[y]-1)); } printf("%d\n",ans); } } } return 0; }
poj 3368(RMQ简单应用)