/*
<转自 http://www.wutianqi.com/?p=1820 >自我修改
* Note: 堆排序(Heap Sort)
*/
#include <iostream>
using namespace std;// 输出当前堆的排序状况
void PrintArray(int data[], int size)
{
for (int i=1; i<=size; ++i)
cout <<data[i]<<" ";
cout<<endl;
}// 堆化,保持堆的性质
// MaxHeapify让a[i]在最大堆中"下降",
// 使以i为根的子树成为最大堆
void MaxHeapify(int *a, int i, int size)
{
int lt = 2*i, rt = 2*i+1;
int largest;
if(lt <= size && a[lt] > a[i]) // 符号修改后形成的最小堆
largest = lt;
else
largest = i;
if(rt <= size && a[rt] > a[largest])
largest = rt;
if(largest != i)
{
int temp = a[i];
a[i] = a[largest];
a[largest] = temp;
MaxHeapify(a, largest, size);
}
}// 建堆
// 自底而上地调用MaxHeapify来将一个数组a[1..size]变成一个最大堆
//
void BuildMaxHeap(int *a, int size)
{
for(int i=size/2; i>=1; --i)
MaxHeapify(a, i, size);
}// 堆排序
// 初始调用BuildMaxHeap将a[1..size]变成最大堆
// 因为数组最大元素在a[1],则可以通过将a[1]与a[size]互换达到正确位置
// 现在新的根元素破坏了最大堆的性质,所以调用MaxHeapify调整,
// 使a[1..size-1]成为最大堆,a[1]又是a[1..size-1]中的最大元素,
// 将a[1]与a[size-1]互换达到正确位置。
// 反复调用Heapify,使整个数组成从小到大排序。
// 注意: 交换只是破坏了以a[1]为根的二叉树最大堆性质,它的左右子二叉树还是具备最大堆性质。
// 这也是为何在BuildMaxHeap时需要遍历size/2到1的结点才能构成最大堆,而这里只需要堆化a[1]即可。
void HeapSort(int *a, int size)
{
BuildMaxHeap(a, size);
PrintArray(a, size);
int len = size;
for(int i=size; i>=2; --i)
{
int temp = a[1];
a[1] = a[i];
a[i] = temp;
len--;
MaxHeapify(a, 1, len);
cout << "中间过程:";
PrintArray(a, size);
}}
int main()
{
int size;
int arr[100];
cout << "Input the num of elements:\n";
cin >> size;
cout << "Input the elements:\n";
for(int i=1; i<=size; ++i)
cin >> arr[i];
cout << endl;
HeapSort(arr, size);
cout << "最后结果:";
PrintArray(arr, size);
}
/*
最大堆
Input the num of elements:
10
Input the elements:
50 36 41 19 23 4 20 18 12 2250 36 41 19 23 4 20 18 12 22
中间过程:41 36 22 19 23 4 20 18 12 50
中间过程:36 23 22 19 12 4 20 18 41 50
中间过程:23 19 22 18 12 4 20 36 41 50
中间过程:22 19 20 18 12 4 23 36 41 50
中间过程:20 19 4 18 12 22 23 36 41 50
中间过程:19 18 4 12 20 22 23 36 41 50
中间过程:18 12 4 19 20 22 23 36 41 50
中间过程:12 4 18 19 20 22 23 36 41 50
中间过程:4 12 18 19 20 22 23 36 41 50
最后结果:4 12 18 19 20 22 23 36 41 50Process returned 0 (0x0) execution time : 2.411 s
Press any key to continue.*/
/*
最小堆
Input the num of elements:
10
Input the elements:
50 36 41 19 23 4 20 18 12 224 12 20 18 22 41 50 36 19 23
中间过程:12 18 20 19 22 41 50 36 23 4中间过程:18 19 20 23 22 41 50 36 12 4
中间过程:19 22 20 23 36 41 50 18 12 4
中间过程:20 22 41 23 36 50 19 18 12 4
中间过程:22 23 41 50 36 20 19 18 12 4
中间过程:23 36 41 50 22 20 19 18 12 4
中间过程:36 50 41 23 22 20 19 18 12 4
中间过程:41 50 36 23 22 20 19 18 12 4
中间过程:50 41 36 23 22 20 19 18 12 4
最后结果:50 41 36 23 22 20 19 18 12 4Process returned 0 (0x0) execution time : 2.795 s
Press any key to continue.*/
堆排序理解 完整代码