UVA 1479 - Graph and Queries
题意:给定一个n个结点m条边的无向图,每个结点一个权值,现在有3种操作
D x,删除id为x的边
Q x k 计算与x结点的连通分量中第k大的数字,不存在就是0
C x v 把x结点权值改为v
要求计算所有Q操作的和除以Q操作的次数的值
思路:Treap的经典题,进行离线操作,把操作全部逆向进行,删边就可以转化为加边,就可以利用并查集,那么维护第k大就利用Treap
代码:
#include <cstdio> #include <cstring> #include <cstdlib> #include <algorithm> #include <vector> using namespace std; typedef long long ll; const int MAXN = 500005; const int N = 20005; const int M = 60005; int cas = 0; struct Treap { struct Node { Node *ch[2]; int r, v, s; Node() {} Node(int v) {ch[0] = ch[1] = NULL; r = rand(); this->v = v; s = 1;} bool operator < (const Node& c) const { return r < c.r; } int cmp(int x) const { if (x == v) return -1; return x < v ? 0 : 1; } void maintain() { s = 1; if (ch[0] != NULL) s += ch[0]->s; if (ch[1] != NULL) s += ch[1]->s; } }; //0 is left, 1 is right void rotate(Node* &o, int d) { Node *k = o->ch[d^1]; o->ch[d^1] = k->ch[d]; k->ch[d] = o; o->maintain(); k->maintain(); o = k; } void insert(Node* &o, int x) { if (o == NULL) o = new Node(x); else { int d = (x < o->v ? 0 : 1); insert(o->ch[d], x); if (o->ch[d]->r > o->r) rotate(o, d^1); } o->maintain(); } void remove(Node* &o, int x) { int d = o->cmp(x); if (d == -1) { Node* u = o; if (o->ch[0] != NULL && o->ch[1] != NULL) { int d = o->ch[0]->r > o->ch[1]->r ? 1 : 0; rotate(o, d); remove(o->ch[d], x); } else { if (o->ch[0] == NULL) o = o->ch[1]; else o = o->ch[0]; delete u; u = NULL; } } else remove(o->ch[d], x); if (o != NULL) o->maintain(); } bool isexist(Node *o, int x) { while (o != NULL) { int d = o->cmp(x); if (d == -1) return true; else o = o->ch[d]; } return false; } int findkth(Node *o, int k, int flag) { //1 is bigth, 0 is smallth if (o == NULL || k <= 0 || k > o->s) return 0; int s = (o->ch[flag] == NULL ? 0 : o->ch[flag]->s); if (k == s + 1) return o->v; else if (k <= s) return findkth(o->ch[flag], k, flag); else return findkth(o->ch[flag^1], k - s - 1, flag); } void mergeto(Node* &a, Node* &b) {//a mergeto b if (a->ch[0] != NULL) mergeto(a->ch[0], b); if (a->ch[1] != NULL) mergeto(a->ch[1], b); insert(b, a->v); delete a; a = NULL; } void removetree(Node* &x) { if (x == NULL) return; if (x->ch[0] != NULL) removetree(x->ch[0]); if (x->ch[1] != NULL) removetree(x->ch[1]); delete x; x = NULL; } int find(int x) { return parent[x] == x ? x : parent[x] = find(parent[x]); } Node* root[N]; int n, m, query_num; int weight[N], parent[N], vis[M]; ll query_tot; struct Query { int type, x, v; Query() {} Query(int type, int x, int v) { this->type = type; this->x = x; this->v = v; } } Q[MAXN]; int qn; struct Edge { int u, v; Edge() {} Edge(int u, int v) { this->u = u; this->v = v; } void read() { scanf("%d%d", &u, &v); } } E[M]; void add_edge(Edge x) { int pu = find(x.u), pv = find(x.v); if (pu != pv) { if (root[pu]->s > root[pv]->s) swap(pu, pv); parent[pu] = pv; mergeto(root[pu], root[pv]); } } void init() { query_num = 0; query_tot = 0; for (int i = 1; i <= n; i++) { scanf("%d", &weight[i]); parent[i] = i; removetree(root[i]); } for (int i = 1; i <= m; i++) E[i].read(); char C[10]; int a, b; qn = 0; memset(vis, 0, sizeof(vis)); while (scanf("%s", C) && C[0] != 'E') { if (C[0] == 'D') { scanf("%d", &a); vis[a] = 1; Q[qn++] = Query(0, a, 0); } else { scanf("%d%d", &a, &b); if (C[0] == 'C') { int tmp = weight[a]; weight[a] = b; b = tmp; Q[qn++] = Query(1, a, b); } else Q[qn++] = Query(2, a, b); } } for (int i = 1; i <= n; i++) insert(root[i], weight[i]); for (int i = 1; i <= m; i++) { if (vis[i]) continue; add_edge(E[i]); } } void solve() { init(); for (int i = qn - 1; i >= 0; i--) { if (Q[i].type == 0) add_edge(E[Q[i].x]); else if (Q[i].type == 1) { int pu = find(Q[i].x); remove(root[pu], weight[Q[i].x]); insert(root[pu], Q[i].v); weight[Q[i].x] = Q[i].v; } else { int pu = find(Q[i].x); query_num++; query_tot += findkth(root[pu], Q[i].v, 1); //printf("%d %lld\n", query_num, query_tot); } } printf("Case %d: %.6lf\n", ++cas, query_tot * 1.0 / query_num); } } gao; int main() { while (~scanf("%d%d", &gao.n, &gao.m) && gao.n || gao.m) { gao.solve(); } return 0; }
时间: 2024-12-26 15:27:21