cs-231n-back propagation-5

Unintuitive effects and their consequences. Notice that if one of the inputs to the multiply gate is very small and the other is very big, then the multiply gate will do something slightly unintuitive: it will assign a relatively huge gradient to the small input and a tiny gradient to the large input. Note that in linear classifiers where the weights are dot producted wTxi (multiplied) with the inputs, this implies that the scale of the data has an effect on the magnitude of the gradient for the weights. For example, if you multiplied all input data examples xi by 1000 during preprocessing, then the gradient on the weights will be 1000 times larger, and you’d have to lower the learning rate by that factor to compensate. This is why preprocessing matters a lot, sometimes in subtle ways! And having intuitive understanding for how the gradients flow can help you debug some of these cases.

学习vertorized:Erik Learned-Miller has also written up a longer related document on taking matrix/vector derivatives which you might find helpful. Find it here.

时间: 2024-10-09 04:05:44

cs-231n-back propagation-5的相关文章

斯坦福CS课程列表

http://exploredegrees.stanford.edu/coursedescriptions/cs/ CS 101. Introduction to Computing Principles. 3-5 Units. Introduces the essential ideas of computing: data representation, algorithms, programming "code", computer hardware, networking, s

(转)Awesome Courses

Awesome Courses  Introduction There is a lot of hidden treasure lying within university pages scattered across the internet. This list is an attempt to bring to light those awesome courses which make their high-quality material i.e. assignments, lect

(转)The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3)

Adit Deshpande CS Undergrad at UCLA ('19) Blog About The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3) Introduction Link to Part 1Link to Part 2 In this post, we’ll go into summarizing a lot of the new and important develo

(转)A Beginner's Guide To Understanding Convolutional Neural Networks

Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural networks. Sounds like a weird combination of biology and math with a little CS sprinkled in, but

A Beginner's Guide To Understanding Convolutional Neural Networks(转)

A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural networks. Sounds like a weird combination of biology and math with a little CS sprinkled in, but these networks have been some of the most influential

CNN(卷积神经网络)

作者:机器之心链接:https://www.zhihu.com/question/52668301/answer/131573702来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. Part 1:图像识别任务 卷积神经网络,听起来像是计算机科学.生物学和数学的诡异组合,但它们已经成为计算机视觉领域中最具影响力的革新的一部分.神经网络在 2012 年崭露头角,Alex Krizhevsky 凭借它们赢得了那一年的 ImageNet 挑战赛(大体上相当于计算机视觉的年度

CS文件类头注释

1.修改unity生成CS文件的模板(模板位置:Unity\Editor\Data\Resources\ScriptTemplates 文件名:81-C# Script-NewBehaviourScript.cs) 本人将模板修改为如下图(红框内的内容) 备注:在"#"之间的为可替换的参数 2.修改模板可替换参数,在工程项目Asset文件夹在创建Editor文件 在文件夹下添加AddFileHeadComment.cs文件 内容如下 参数内容根据个人需求修改

LabelRank(A Stabilized Label Propagation Algorithm for Community Detection in Networks)非重叠社区发现

最近在研究基于标签传播的社区分类,LabelRank算法基于标签传播和马尔科夫随机游走思路上改装的算法,引用率较高,打算将代码实现,便于加深理解. 一.概念 相关概念不再累述,详情见前两篇文章 二.算法思路 (1)Propagation (2)Inflation (3)Cut off (4)Explicit Conditional Update (5)Stop Criterion 三.A Stabilized Label Propagation Algorithm for Community D

CS 和 BS 的区别和优缺点

bs是浏览器(browser)和服务器(server) cs是静态客户端程序(client)和服务器(server) 区别在于,虽然同样是通过一个程序连接到服务器进行网络通讯,但是bs结构的,客户端运行在浏览器里,比如你看百度,就是通过浏览器.还有一些bs结构的应用,比如中国电信,以及一些电子商务平台.用bs结构的好处是,不必专门开发一个客户端界面,可用asp,php,jsp等比较快速开发web应用的程序开发. cs结构的,要做一个客户端.网络游戏基本上大多是cs结构,比如你玩传奇,要专门开个传

Spring AOP propagation七种属性值

<!-- 配置事务通知 --> <tx:advice id="advice" transaction-manager="transactionManager"> <tx:attributes> <tx:method name="insert*" propagation="REQUIRED" rollback-for="Exception"/> <tx:m