Prime Ring Problem
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 31900 Accepted Submission(s): 14108
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in
lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6 8
Sample Output
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2
Source
Asia 1996, Shanghai (Mainland China)
又一个深搜题目!http://rapheal.iteye.com/blog/1526863这个大神 讲的不错。并且这个素数环问题 参考了 人家的优化方案,值得好好吸收。
#include<iostream> #include<string.h> #include<list> using namespace std; int prime[41],visited[21],step,n; list<int>cnt; void Prime() // 素数打表判定 { memset(prime,0,sizeof(prime)); for(int i=2; i<=41; i++) { if(!prime[i]) { for(int j=i+i; j<=41; j+=i) prime[j]=1; } } prime[1]=1; } void dfs(int k) { if(step==n&&!prime[k+1]) //某次搜索结束条件,也即如果出现某条满足题意搜索,输出即可 { cout<<1; for(list<int>::iterator it=cnt.begin(); it!=cnt.end(); it++) cout<<" "<<(*it); cout<<endl; return ; } else if(k&1) //如果为奇数,那么为了和下一个数的加和为素数,只能在奇数中搜索 { for(int i=2; i<=n; i+=2) { if(!visited[i]&&!prime[k+i])//如果某个结点未搜索过,且满足和k加和为素数 { cnt.push_back(i); visited[i]=1; //标记已被访问 step++; dfs(i); visited[i]=0;//回溯到上次结点处 step--; cnt.pop_back(); } } } else if(!(k&1)) { for(int p=3; p<=n; p+=2) { if(!visited[p]&&!prime[p+k]) { cnt.push_back(p); visited[p]=1; step++; dfs(p); visited[p]=0; step--; cnt.pop_back(); } } } return ; } int main() { int t=0; while(cin>>n) { cout<<"Case "<<++t<<":"<<endl; memset(visited,0,sizeof(visited)); Prime(); // if(n&1) // continue; visited[1]=1; step=1; dfs(1); cnt.clear(); cout<<endl; } return 0; }