本文简单分析x264项目中的命令行工具(x264.exe)的源代码。该命令行工具可以调用libx264将YUV格式像素数据编码为H.264码流。
函数调用关系图
X264命令行工具的源代码在x264中的位置如下图所示。
从图中可以看出,X264命令行工具调用了libx264的几个API完成了H.264编码工作。使用libx264的API进行编码可以参考《最简单的视频编码器:基于libx264(编码YUV为H.264)》,这个流程中最关键的API包括:
x264_param_default():设置参数集结构体x264_param_t的缺省值。
x264_encoder_open():打开编码器。
x264_encoder_headers():输出SPS,PPS,SEI等信息。
x264_encoder_encode():编码输出一帧图像。
x264_encoder_close():关闭编码器。
在X264命令行工具中,main()首先调用parse()解析输入的命令行参数,然后调用encode()进行编码。parse()首先调用x264_param_default()为存储参数的结构体x264_param_t赋默认值;然后在一个大循环中调用getopt_long()逐个解析输入的参数,并作相应的处理;最后调用select_input()和select_output()解析输入文件格式(例如yuv,y4m…)和输出文件格式(例如raw,flv,MP4…)。encode()首先调用x264_encoder_open()打开H.264编码器,然后调用x264_encoder_headers()输出H.264码流的头信息(例如SPS、PPS、SEI),接着进入一个循环并且调用encode_frame()逐帧编码视频,最后调用x264_encoder_close()关闭解码器。其中encode_frame()中又调用了x264_encoder_encode()完成了具体的编码工作。下文将会对上述流程展开分析。
main()
main()是x264控制台程序的入口函数,定义如下所示。
//主函数 int main( int argc, char **argv ) { //参数集 x264_param_t param; cli_opt_t opt = {0}; int ret = 0; FAIL_IF_ERROR( x264_threading_init(), "unable to initialize threading\n" ) #ifdef _WIN32 FAIL_IF_ERROR( !get_argv_utf8( &argc, &argv ), "unable to convert command line to UTF-8\n" ) GetConsoleTitleW( org_console_title, CONSOLE_TITLE_SIZE ); _setmode( _fileno( stdin ), _O_BINARY ); _setmode( _fileno( stdout ), _O_BINARY ); _setmode( _fileno( stderr ), _O_BINARY ); #endif /* Parse command line */ //解析命令行输入 if( parse( argc, argv, ?m, &opt ) < 0 ) ret = -1; #ifdef _WIN32 /* Restore title; it can be changed by input modules */ SetConsoleTitleW( org_console_title ); #endif /* Control-C handler */ signal( SIGINT, sigint_handler ); //编码 if( !ret ) ret = encode( ?m, &opt ); /* clean up handles */ if( filter.free ) filter.free( opt.hin ); else if( opt.hin ) cli_input.close_file( opt.hin ); if( opt.hout ) cli_output.close_file( opt.hout, 0, 0 ); if( opt.tcfile_out ) fclose( opt.tcfile_out ); if( opt.qpfile ) fclose( opt.qpfile ); #ifdef _WIN32 SetConsoleTitleW( org_console_title ); free( argv ); #endif return ret; }
可以看出main()的定义很简单,它主要调用了两个函数:parse()和encode()。main()首先调用parse()解析输入的命令行参数,然后调用encode()进行编码。下面分别分析这两个函数。
parse()
parse()用于解析命令行输入的参数(存储于argv[]中)。它的定义如下所示。
//解析命令行输入 static int parse( int argc, char **argv, x264_param_t *param, cli_opt_t *opt ) { char *input_filename = NULL; const char *demuxer = demuxer_names[0]; char *output_filename = NULL; const char *muxer = muxer_names[0]; char *tcfile_name = NULL; x264_param_t defaults; char *profile = NULL; char *vid_filters = NULL; int b_thread_input = 0; int b_turbo = 1; int b_user_ref = 0; int b_user_fps = 0; int b_user_interlaced = 0; cli_input_opt_t input_opt; cli_output_opt_t output_opt; char *preset = NULL; char *tune = NULL; //初始化参数默认值 x264_param_default( &defaults ); cli_log_level = defaults.i_log_level; memset( &input_opt, 0, sizeof(cli_input_opt_t) ); memset( &output_opt, 0, sizeof(cli_output_opt_t) ); input_opt.bit_depth = 8; input_opt.input_range = input_opt.output_range = param->vui.b_fullrange = RANGE_AUTO; int output_csp = defaults.i_csp; opt->b_progress = 1; /* Presets are applied before all other options. */ for( optind = 0;; ) { int c = getopt_long( argc, argv, short_options, long_options, NULL ); if( c == -1 ) break; if( c == OPT_PRESET ) preset = optarg; if( c == OPT_TUNE ) tune = optarg; else if( c == ‘?‘ ) return -1; } if( preset && !strcasecmp( preset, "placebo" ) ) b_turbo = 0; //设置preset,tune if( x264_param_default_preset( param, preset, tune ) < 0 ) return -1; /* Parse command line options */ //解析命令行选项 for( optind = 0;; ) { int b_error = 0; int long_options_index = -1; int c = getopt_long( argc, argv, short_options, long_options, &long_options_index ); if( c == -1 ) { break; } //不同的选项做不同的处理 switch( c ) { case ‘h‘: help( &defaults, 0 );//"-h"帮助菜单 exit(0); case OPT_LONGHELP: help( &defaults, 1 ); exit(0); case OPT_FULLHELP: help( &defaults, 2 ); exit(0); case ‘V‘: print_version_info();//打印版本信息 exit(0); case OPT_FRAMES: param->i_frame_total = X264_MAX( atoi( optarg ), 0 ); break; case OPT_SEEK: opt->i_seek = X264_MAX( atoi( optarg ), 0 ); break; case ‘o‘: output_filename = optarg;//输出文件路径 break; case OPT_MUXER: FAIL_IF_ERROR( parse_enum_name( optarg, muxer_names, &muxer ), "Unknown muxer `%s‘\n", optarg ) break; case OPT_DEMUXER: FAIL_IF_ERROR( parse_enum_name( optarg, demuxer_names, &demuxer ), "Unknown demuxer `%s‘\n", optarg ) break; case OPT_INDEX: input_opt.index_file = optarg; break; case OPT_QPFILE: opt->qpfile = x264_fopen( optarg, "rb" ); FAIL_IF_ERROR( !opt->qpfile, "can‘t open qpfile `%s‘\n", optarg ) if( !x264_is_regular_file( opt->qpfile ) ) { x264_cli_log( "x264", X264_LOG_ERROR, "qpfile incompatible with non-regular file `%s‘\n", optarg ); fclose( opt->qpfile ); return -1; } break; case OPT_THREAD_INPUT: b_thread_input = 1; break; case OPT_QUIET: cli_log_level = param->i_log_level = X264_LOG_NONE;//设置log级别 break; case ‘v‘: cli_log_level = param->i_log_level = X264_LOG_DEBUG;//设置log级别 break; case OPT_LOG_LEVEL: if( !parse_enum_value( optarg, log_level_names, &cli_log_level ) ) cli_log_level += X264_LOG_NONE; else cli_log_level = atoi( optarg ); param->i_log_level = cli_log_level;//设置log级别 break; case OPT_NOPROGRESS: opt->b_progress = 0; break; case OPT_TUNE: case OPT_PRESET: break; case OPT_PROFILE: profile = optarg; break; case OPT_SLOWFIRSTPASS: b_turbo = 0; break; case ‘r‘: b_user_ref = 1; goto generic_option; case OPT_FPS: b_user_fps = 1; param->b_vfr_input = 0; goto generic_option; case OPT_INTERLACED: b_user_interlaced = 1; goto generic_option; case OPT_TCFILE_IN: tcfile_name = optarg; break; case OPT_TCFILE_OUT: opt->tcfile_out = x264_fopen( optarg, "wb" ); FAIL_IF_ERROR( !opt->tcfile_out, "can‘t open `%s‘\n", optarg ) break; case OPT_TIMEBASE: input_opt.timebase = optarg; break; case OPT_PULLDOWN: FAIL_IF_ERROR( parse_enum_value( optarg, pulldown_names, &opt->i_pulldown ), "Unknown pulldown `%s‘\n", optarg ) break; case OPT_VIDEO_FILTER: vid_filters = optarg; break; case OPT_INPUT_FMT: input_opt.format = optarg;//输入文件格式 break; case OPT_INPUT_RES: input_opt.resolution = optarg;//输入分辨率 break; case OPT_INPUT_CSP: input_opt.colorspace = optarg;//输入色域 break; case OPT_INPUT_DEPTH: input_opt.bit_depth = atoi( optarg );//输入颜色位深 break; case OPT_DTS_COMPRESSION: output_opt.use_dts_compress = 1; break; case OPT_OUTPUT_CSP: FAIL_IF_ERROR( parse_enum_value( optarg, output_csp_names, &output_csp ), "Unknown output csp `%s‘\n", optarg ) // correct the parsed value to the libx264 csp value #if X264_CHROMA_FORMAT static const uint8_t output_csp_fix[] = { X264_CHROMA_FORMAT, X264_CSP_RGB }; #else static const uint8_t output_csp_fix[] = { X264_CSP_I420, X264_CSP_I422, X264_CSP_I444, X264_CSP_RGB }; #endif param->i_csp = output_csp = output_csp_fix[output_csp]; break; case OPT_INPUT_RANGE: FAIL_IF_ERROR( parse_enum_value( optarg, range_names, &input_opt.input_range ), "Unknown input range `%s‘\n", optarg ) input_opt.input_range += RANGE_AUTO; break; case OPT_RANGE: FAIL_IF_ERROR( parse_enum_value( optarg, range_names, ?m->vui.b_fullrange ), "Unknown range `%s‘\n", optarg ); input_opt.output_range = param->vui.b_fullrange += RANGE_AUTO; break; default: generic_option: { if( long_options_index < 0 ) { for( int i = 0; long_options[i].name; i++ ) if( long_options[i].val == c ) { long_options_index = i; break; } if( long_options_index < 0 ) { /* getopt_long already printed an error message */ return -1; } } //解析以字符串方式输入的参数 //即选项名称和选项值都是字符串 b_error |= x264_param_parse( param, long_options[long_options_index].name, optarg ); } } if( b_error ) { const char *name = long_options_index > 0 ? long_options[long_options_index].name : argv[optind-2]; x264_cli_log( "x264", X264_LOG_ERROR, "invalid argument: %s = %s\n", name, optarg ); return -1; } } /* If first pass mode is used, apply faster settings. */ if( b_turbo ) x264_param_apply_fastfirstpass( param ); /* Apply profile restrictions. */ //设置profile if( x264_param_apply_profile( param, profile ) < 0 ) return -1; /* Get the file name */ FAIL_IF_ERROR( optind > argc - 1 || !output_filename, "No %s file. Run x264 --help for a list of options.\n", optind > argc - 1 ? "input" : "output" ) //根据文件名的后缀确定输出的文件格式(raw H264,flv,mp4...) if( select_output( muxer, output_filename, param ) ) return -1; FAIL_IF_ERROR( cli_output.open_file( output_filename, &opt->hout, &output_opt ), "could not open output file `%s‘\n", output_filename ) //输入文件路径 input_filename = argv[optind++]; video_info_t info = {0}; char demuxername[5]; /* set info flags to be overwritten by demuxer as necessary. */ //设置info结构体 info.csp = param->i_csp; info.fps_num = param->i_fps_num; info.fps_den = param->i_fps_den; info.fullrange = input_opt.input_range == RANGE_PC; info.interlaced = param->b_interlaced; if( param->vui.i_sar_width > 0 && param->vui.i_sar_height > 0 ) { info.sar_width = param->vui.i_sar_width; info.sar_height = param->vui.i_sar_height; } info.tff = param->b_tff; info.vfr = param->b_vfr_input; input_opt.seek = opt->i_seek; input_opt.progress = opt->b_progress; input_opt.output_csp = output_csp; //设置输入文件的格式(yuv,y4m...) if( select_input( demuxer, demuxername, input_filename, &opt->hin, &info, &input_opt ) ) return -1; FAIL_IF_ERROR( !opt->hin && cli_input.open_file( input_filename, &opt->hin, &info, &input_opt ), "could not open input file `%s‘\n", input_filename ) x264_reduce_fraction( &info.sar_width, &info.sar_height ); x264_reduce_fraction( &info.fps_num, &info.fps_den ); x264_cli_log( demuxername, X264_LOG_INFO, "%dx%d%c %u:%u @ %u/%u fps (%cfr)\n", info.width, info.height, info.interlaced ? ‘i‘ : ‘p‘, info.sar_width, info.sar_height, info.fps_num, info.fps_den, info.vfr ? ‘v‘ : ‘c‘ ); if( tcfile_name ) { FAIL_IF_ERROR( b_user_fps, "--fps + --tcfile-in is incompatible.\n" ) FAIL_IF_ERROR( timecode_input.open_file( tcfile_name, &opt->hin, &info, &input_opt ), "timecode input failed\n" ) cli_input = timecode_input; } else FAIL_IF_ERROR( !info.vfr && input_opt.timebase, "--timebase is incompatible with cfr input\n" ) /* init threaded input while the information about the input video is unaltered by filtering */ #if HAVE_THREAD if( info.thread_safe && (b_thread_input || param->i_threads > 1 || (param->i_threads == X264_THREADS_AUTO && x264_cpu_num_processors() > 1)) ) { if( thread_input.open_file( NULL, &opt->hin, &info, NULL ) ) { fprintf( stderr, "x264 [error]: threaded input failed\n" ); return -1; } cli_input = thread_input; } #endif /* override detected values by those specified by the user */ if( param->vui.i_sar_width > 0 && param->vui.i_sar_height > 0 ) { info.sar_width = param->vui.i_sar_width; info.sar_height = param->vui.i_sar_height; } if( b_user_fps ) { info.fps_num = param->i_fps_num; info.fps_den = param->i_fps_den; } if( !info.vfr ) { info.timebase_num = info.fps_den; info.timebase_den = info.fps_num; } if( !tcfile_name && input_opt.timebase ) { uint64_t i_user_timebase_num; uint64_t i_user_timebase_den; int ret = sscanf( input_opt.timebase, "%"SCNu64"/%"SCNu64, &i_user_timebase_num, &i_user_timebase_den ); FAIL_IF_ERROR( !ret, "invalid argument: timebase = %s\n", input_opt.timebase ) else if( ret == 1 ) { i_user_timebase_num = info.timebase_num; i_user_timebase_den = strtoul( input_opt.timebase, NULL, 10 ); } FAIL_IF_ERROR( i_user_timebase_num > UINT32_MAX || i_user_timebase_den > UINT32_MAX, "timebase you specified exceeds H.264 maximum\n" ) opt->timebase_convert_multiplier = ((double)i_user_timebase_den / info.timebase_den) * ((double)info.timebase_num / i_user_timebase_num); info.timebase_num = i_user_timebase_num; info.timebase_den = i_user_timebase_den; info.vfr = 1; } if( b_user_interlaced ) { info.interlaced = param->b_interlaced; info.tff = param->b_tff; } if( input_opt.input_range != RANGE_AUTO ) info.fullrange = input_opt.input_range; //初始化滤镜filter //filter可以认为是一种“扩展”了的输入源 if( init_vid_filters( vid_filters, &opt->hin, &info, param, output_csp ) ) return -1; /* set param flags from the post-filtered video */ param->b_vfr_input = info.vfr; param->i_fps_num = info.fps_num; param->i_fps_den = info.fps_den; param->i_timebase_num = info.timebase_num; param->i_timebase_den = info.timebase_den; param->vui.i_sar_width = info.sar_width; param->vui.i_sar_height = info.sar_height; info.num_frames = X264_MAX( info.num_frames - opt->i_seek, 0 ); if( (!info.num_frames || param->i_frame_total < info.num_frames) && param->i_frame_total > 0 ) info.num_frames = param->i_frame_total; param->i_frame_total = info.num_frames; if( !b_user_interlaced && info.interlaced ) { #if HAVE_INTERLACED x264_cli_log( "x264", X264_LOG_WARNING, "input appears to be interlaced, enabling %cff interlaced mode.\n" " If you want otherwise, use --no-interlaced or --%cff\n", info.tff ? ‘t‘ : ‘b‘, info.tff ? ‘b‘ : ‘t‘ ); param->b_interlaced = 1; param->b_tff = !!info.tff; #else x264_cli_log( "x264", X264_LOG_WARNING, "input appears to be interlaced, but not compiled with interlaced support\n" ); #endif } /* if the user never specified the output range and the input is now rgb, default it to pc */ int csp = param->i_csp & X264_CSP_MASK; if( csp >= X264_CSP_BGR && csp <= X264_CSP_RGB ) { if( input_opt.output_range == RANGE_AUTO ) param->vui.b_fullrange = RANGE_PC; /* otherwise fail if they specified tv */ FAIL_IF_ERROR( !param->vui.b_fullrange, "RGB must be PC range" ) } /* Automatically reduce reference frame count to match the user‘s target level * if the user didn‘t explicitly set a reference frame count. */ if( !b_user_ref ) { int mbs = (((param->i_width)+15)>>4) * (((param->i_height)+15)>>4); for( int i = 0; x264_levels[i].level_idc != 0; i++ ) if( param->i_level_idc == x264_levels[i].level_idc ) { while( mbs * param->i_frame_reference > x264_levels[i].dpb && param->i_frame_reference > 1 ) param->i_frame_reference--; break; } } return 0; }
下面简单梳理parse()的流程:
(1)调用x264_param_default()为存储参数的结构体x264_param_t赋默认值
(2)调用x264_param_default_preset()为x264_param_t赋值
(3)在一个大循环中调用getopt_long()逐个解析输入的参数,并作相应的处理。举几个例子:a)“-h”:调用help()打开帮助菜单。
b)“-V”调用print_version_info()打印版本信息。
c)对于长选项,调用x264_param_parse()进行处理。
(4)调用select_input()解析输出文件格式(例如raw,flv,MP4…)
(5)调用select_output()解析输入文件格式(例如yuv,y4m…)
下文按照顺序记录parse()中涉及到的函数:
x264_param_default()
x264_param_default_preset()
help()
print_version_info()
x264_param_parse()
select_input()
select_output()
x264_param_default()
x264_param_default()是一个x264的API。该函数用于设置x264中x264_param_t结构体的默认值。函数的声明如下所示。
/* x264_param_default: * fill x264_param_t with default values and do CPU detection */ void x264_param_default( x264_param_t * );
x264_param_default()的定义如下所示。
/**************************************************************************** * x264_param_default: ****************************************************************************/ //初始化参数默认值 void x264_param_default( x264_param_t *param ) { /* */ memset( param, 0, sizeof( x264_param_t ) ); /* CPU autodetect */ param->cpu = x264_cpu_detect(); param->i_threads = X264_THREADS_AUTO; param->i_lookahead_threads = X264_THREADS_AUTO; param->b_deterministic = 1; param->i_sync_lookahead = X264_SYNC_LOOKAHEAD_AUTO; /* Video properties */ param->i_csp = X264_CHROMA_FORMAT ? X264_CHROMA_FORMAT : X264_CSP_I420; param->i_width = 0; param->i_height = 0; param->vui.i_sar_width = 0; param->vui.i_sar_height= 0; param->vui.i_overscan = 0; /* undef */ param->vui.i_vidformat = 5; /* undef */ param->vui.b_fullrange = -1; /* default depends on input */ param->vui.i_colorprim = 2; /* undef */ param->vui.i_transfer = 2; /* undef */ param->vui.i_colmatrix = -1; /* default depends on input */ param->vui.i_chroma_loc= 0; /* left center */ param->i_fps_num = 25; param->i_fps_den = 1; param->i_level_idc = -1; param->i_slice_max_size = 0; param->i_slice_max_mbs = 0; param->i_slice_count = 0; /* Encoder parameters */ //编码参数--最常见 param->i_frame_reference = 3; param->i_keyint_max = 250; param->i_keyint_min = X264_KEYINT_MIN_AUTO; param->i_bframe = 3; param->i_scenecut_threshold = 40; param->i_bframe_adaptive = X264_B_ADAPT_FAST; param->i_bframe_bias = 0; param->i_bframe_pyramid = X264_B_PYRAMID_NORMAL; param->b_interlaced = 0; param->b_constrained_intra = 0; param->b_deblocking_filter = 1; param->i_deblocking_filter_alphac0 = 0; param->i_deblocking_filter_beta = 0; param->b_cabac = 1; param->i_cabac_init_idc = 0; //码率控制模块 Rate Control param->rc.i_rc_method = X264_RC_CRF; param->rc.i_bitrate = 0; param->rc.f_rate_tolerance = 1.0; param->rc.i_vbv_max_bitrate = 0; param->rc.i_vbv_buffer_size = 0; param->rc.f_vbv_buffer_init = 0.9; param->rc.i_qp_constant = 23 + QP_BD_OFFSET; param->rc.f_rf_constant = 23; param->rc.i_qp_min = 0; param->rc.i_qp_max = QP_MAX; param->rc.i_qp_step = 4; param->rc.f_ip_factor = 1.4; param->rc.f_pb_factor = 1.3; param->rc.i_aq_mode = X264_AQ_VARIANCE; param->rc.f_aq_strength = 1.0; param->rc.i_lookahead = 40; param->rc.b_stat_write = 0; param->rc.psz_stat_out = "x264_2pass.log"; param->rc.b_stat_read = 0; param->rc.psz_stat_in = "x264_2pass.log"; param->rc.f_qcompress = 0.6; param->rc.f_qblur = 0.5; param->rc.f_complexity_blur = 20; param->rc.i_zones = 0; param->rc.b_mb_tree = 1; /* Log */ //日志模块 param->pf_log = x264_log_default; param->p_log_private = NULL; param->i_log_level = X264_LOG_INFO; /* */ //分析模块 Analysis param->analyse.intra = X264_ANALYSE_I4x4 | X264_ANALYSE_I8x8; param->analyse.inter = X264_ANALYSE_I4x4 | X264_ANALYSE_I8x8 | X264_ANALYSE_PSUB16x16 | X264_ANALYSE_BSUB16x16; param->analyse.i_direct_mv_pred = X264_DIRECT_PRED_SPATIAL; param->analyse.i_me_method = X264_ME_HEX; param->analyse.f_psy_rd = 1.0; param->analyse.b_psy = 1; param->analyse.f_psy_trellis = 0; param->analyse.i_me_range = 16; param->analyse.i_subpel_refine = 7; param->analyse.b_mixed_references = 1; param->analyse.b_chroma_me = 1; param->analyse.i_mv_range_thread = -1; param->analyse.i_mv_range = -1; // set from level_idc param->analyse.i_chroma_qp_offset = 0; param->analyse.b_fast_pskip = 1; param->analyse.b_weighted_bipred = 1; param->analyse.i_weighted_pred = X264_WEIGHTP_SMART; param->analyse.b_dct_decimate = 1; param->analyse.b_transform_8x8 = 1; param->analyse.i_trellis = 1; param->analyse.i_luma_deadzone[0] = 21; param->analyse.i_luma_deadzone[1] = 11; param->analyse.b_psnr = 0; param->analyse.b_ssim = 0; param->i_cqm_preset = X264_CQM_FLAT; memset( param->cqm_4iy, 16, sizeof( param->cqm_4iy ) ); memset( param->cqm_4py, 16, sizeof( param->cqm_4py ) ); memset( param->cqm_4ic, 16, sizeof( param->cqm_4ic ) ); memset( param->cqm_4pc, 16, sizeof( param->cqm_4pc ) ); memset( param->cqm_8iy, 16, sizeof( param->cqm_8iy ) ); memset( param->cqm_8py, 16, sizeof( param->cqm_8py ) ); memset( param->cqm_8ic, 16, sizeof( param->cqm_8ic ) ); memset( param->cqm_8pc, 16, sizeof( param->cqm_8pc ) ); param->b_repeat_headers = 1; param->b_annexb = 1; param->b_aud = 0; param->b_vfr_input = 1; param->i_nal_hrd = X264_NAL_HRD_NONE; param->b_tff = 1; param->b_pic_struct = 0; param->b_fake_interlaced = 0; param->i_frame_packing = -1; param->b_opencl = 0; param->i_opencl_device = 0; param->opencl_device_id = NULL; param->psz_clbin_file = NULL; }
从源代码可以看出,x264_param_default()对输入的存储参数的结构体x264_param_t的成员变量进行了赋值工作。
x264_param_default_preset()
x264_param_default_preset()是一个libx264的API,用于设置x264的preset和tune。该函数的声明如下所示。
/* Multiple tunings can be used if separated by a delimiter in ",./-+", * however multiple psy tunings cannot be used. * film, animation, grain, stillimage, psnr, and ssim are psy tunings. * * returns 0 on success, negative on failure (e.g. invalid preset/tune name). */ int x264_param_default_preset( x264_param_t *, const char *preset, const char *tune );
x264_param_default_preset()的定义如下所示。
//设置preset,tune int x264_param_default_preset( x264_param_t *param, const char *preset, const char *tune ) { x264_param_default( param ); //设置preset if( preset && x264_param_apply_preset( param, preset ) < 0 ) return -1; //设置tune if( tune && x264_param_apply_tune( param, tune ) < 0 ) return -1; return 0; }
从源代码可以看出,x264_param_default_preset()调用x264_param_apply_preset()设置preset,调用x264_param_apply_tune()设置tune。记录一下这两个函数。
x264_param_apply_preset()
x264_param_apply_preset()用于设置preset。该函数的定义如下所示。
//设置preset static int x264_param_apply_preset( x264_param_t *param, const char *preset ) { char *end; int i = strtol( preset, &end, 10 ); if( *end == 0 && i >= 0 && i < sizeof(x264_preset_names)/sizeof(*x264_preset_names)-1 ) preset = x264_preset_names[i]; //几种不同的preset设置不同的参数 if( !strcasecmp( preset, "ultrafast" ) ) { param->i_frame_reference = 1; param->i_scenecut_threshold = 0; param->b_deblocking_filter = 0;//不使用去块滤波 param->b_cabac = 0;//不使用CABAC param->i_bframe = 0;//不使用B帧 param->analyse.intra = 0; param->analyse.inter = 0; param->analyse.b_transform_8x8 = 0;//不使用8x8DCT param->analyse.i_me_method = X264_ME_DIA;//运动搜索方法使用“Diamond” param->analyse.i_subpel_refine = 0; param->rc.i_aq_mode = 0; param->analyse.b_mixed_references = 0; param->analyse.i_trellis = 0; param->i_bframe_adaptive = X264_B_ADAPT_NONE; param->rc.b_mb_tree = 0; param->analyse.i_weighted_pred = X264_WEIGHTP_NONE;//不使用加权 param->analyse.b_weighted_bipred = 0; param->rc.i_lookahead = 0; } else if( !strcasecmp( preset, "superfast" ) ) { param->analyse.inter = X264_ANALYSE_I8x8|X264_ANALYSE_I4x4; param->analyse.i_me_method = X264_ME_DIA;//钻石模板 param->analyse.i_subpel_refine = 1;//亚像素运动估计质量为1 param->i_frame_reference = 1; param->analyse.b_mixed_references = 0; param->analyse.i_trellis = 0; param->rc.b_mb_tree = 0; param->analyse.i_weighted_pred = X264_WEIGHTP_SIMPLE; param->rc.i_lookahead = 0; } else if( !strcasecmp( preset, "veryfast" ) ) { param->analyse.i_me_method = X264_ME_HEX;//六边形模板 param->analyse.i_subpel_refine = 2; param->i_frame_reference = 1; param->analyse.b_mixed_references = 0; param->analyse.i_trellis = 0; param->analyse.i_weighted_pred = X264_WEIGHTP_SIMPLE; param->rc.i_lookahead = 10; } else if( !strcasecmp( preset, "faster" ) ) { param->analyse.b_mixed_references = 0; param->i_frame_reference = 2; param->analyse.i_subpel_refine = 4; param->analyse.i_weighted_pred = X264_WEIGHTP_SIMPLE; param->rc.i_lookahead = 20; } else if( !strcasecmp( preset, "fast" ) ) { param->i_frame_reference = 2; param->analyse.i_subpel_refine = 6; param->analyse.i_weighted_pred = X264_WEIGHTP_SIMPLE; param->rc.i_lookahead = 30; } else if( !strcasecmp( preset, "medium" ) ) { /* Default is medium */ } else if( !strcasecmp( preset, "slow" ) ) { param->analyse.i_me_method = X264_ME_UMH;//UMH相对复杂 param->analyse.i_subpel_refine = 8;//亚像素运动估计质量为8 param->i_frame_reference = 5; param->i_bframe_adaptive = X264_B_ADAPT_TRELLIS; param->analyse.i_direct_mv_pred = X264_DIRECT_PRED_AUTO; param->rc.i_lookahead = 50; } else if( !strcasecmp( preset, "slower" ) ) { param->analyse.i_me_method = X264_ME_UMH; param->analyse.i_subpel_refine = 9; param->i_frame_reference = 8; param->i_bframe_adaptive = X264_B_ADAPT_TRELLIS; param->analyse.i_direct_mv_pred = X264_DIRECT_PRED_AUTO; param->analyse.inter |= X264_ANALYSE_PSUB8x8; param->analyse.i_trellis = 2; param->rc.i_lookahead = 60; } else if( !strcasecmp( preset, "veryslow" ) ) { param->analyse.i_me_method = X264_ME_UMH; param->analyse.i_subpel_refine = 10; param->analyse.i_me_range = 24; param->i_frame_reference = 16; param->i_bframe_adaptive = X264_B_ADAPT_TRELLIS; param->analyse.i_direct_mv_pred = X264_DIRECT_PRED_AUTO; param->analyse.inter |= X264_ANALYSE_PSUB8x8; param->analyse.i_trellis = 2; param->i_bframe = 8; param->rc.i_lookahead = 60; } else if( !strcasecmp( preset, "placebo" ) ) { param->analyse.i_me_method = X264_ME_TESA;//TESA很慢 param->analyse.i_subpel_refine = 11; param->analyse.i_me_range = 24; param->i_frame_reference = 16; param->i_bframe_adaptive = X264_B_ADAPT_TRELLIS; param->analyse.i_direct_mv_pred = X264_DIRECT_PRED_AUTO; param->analyse.inter |= X264_ANALYSE_PSUB8x8; param->analyse.b_fast_pskip = 0; param->analyse.i_trellis = 2; param->i_bframe = 16; param->rc.i_lookahead = 60; } else { x264_log( NULL, X264_LOG_ERROR, "invalid preset ‘%s‘\n", preset ); return -1; } return 0; }
可以看出x264_param_apply_preset()通过strcasecmp()比较字符串的方法得到输入的preset类型;然后根据preset类型,设定 x264_param_t中相应的参数。
x264_param_apply_tune()
x264_param_apply_tune()用于设置tune。该函数的定义如下所示。
//设置tune static int x264_param_apply_tune( x264_param_t *param, const char *tune ) { char *tmp = x264_malloc( strlen( tune ) + 1 ); if( !tmp ) return -1; tmp = strcpy( tmp, tune ); //分解一个字符串为一个字符串数组。第2个参数为分隔符 char *s = strtok( tmp, ",./-+" ); int psy_tuning_used = 0; //设置 //这里是循环的,可以设置多次 while( s ) { if( !strncasecmp( s, "film", 4 ) ) { if( psy_tuning_used++ ) goto psy_failure; param->i_deblocking_filter_alphac0 = -1; param->i_deblocking_filter_beta = -1; param->analyse.f_psy_trellis = 0.15; } else if( !strncasecmp( s, "animation", 9 ) ) { if( psy_tuning_used++ ) goto psy_failure; param->i_frame_reference = param->i_frame_reference > 1 ? param->i_frame_reference*2 : 1; param->i_deblocking_filter_alphac0 = 1; param->i_deblocking_filter_beta = 1; param->analyse.f_psy_rd = 0.4; param->rc.f_aq_strength = 0.6; param->i_bframe += 2; } else if( !strncasecmp( s, "grain", 5 ) ) { if( psy_tuning_used++ ) goto psy_failure; param->i_deblocking_filter_alphac0 = -2; param->i_deblocking_filter_beta = -2; param->analyse.f_psy_trellis = 0.25; param->analyse.b_dct_decimate = 0; param->rc.f_pb_factor = 1.1; param->rc.f_ip_factor = 1.1; param->rc.f_aq_strength = 0.5; param->analyse.i_luma_deadzone[0] = 6; param->analyse.i_luma_deadzone[1] = 6; param->rc.f_qcompress = 0.8; } else if( !strncasecmp( s, "stillimage", 10 ) ) { if( psy_tuning_used++ ) goto psy_failure; param->i_deblocking_filter_alphac0 = -3; param->i_deblocking_filter_beta = -3; param->analyse.f_psy_rd = 2.0; param->analyse.f_psy_trellis = 0.7; param->rc.f_aq_strength = 1.2; } else if( !strncasecmp( s, "psnr", 4 ) ) { if( psy_tuning_used++ ) goto psy_failure; param->rc.i_aq_mode = X264_AQ_NONE; param->analyse.b_psy = 0; } else if( !strncasecmp( s, "ssim", 4 ) ) { if( psy_tuning_used++ ) goto psy_failure; param->rc.i_aq_mode = X264_AQ_AUTOVARIANCE; param->analyse.b_psy = 0; } else if( !strncasecmp( s, "fastdecode", 10 ) ) { param->b_deblocking_filter = 0; param->b_cabac = 0; param->analyse.b_weighted_bipred = 0; param->analyse.i_weighted_pred = X264_WEIGHTP_NONE; } else if( !strncasecmp( s, "zerolatency", 11 ) ) { //zerolatency速度快 param->rc.i_lookahead = 0; param->i_sync_lookahead = 0; param->i_bframe = 0;//不使用B帧 param->b_sliced_threads = 1; param->b_vfr_input = 0; param->rc.b_mb_tree = 0; } else if( !strncasecmp( s, "touhou", 6 ) ) { if( psy_tuning_used++ ) goto psy_failure; param->i_frame_reference = param->i_frame_reference > 1 ? param->i_frame_reference*2 : 1; param->i_deblocking_filter_alphac0 = -1; param->i_deblocking_filter_beta = -1; param->analyse.f_psy_trellis = 0.2; param->rc.f_aq_strength = 1.3; if( param->analyse.inter & X264_ANALYSE_PSUB16x16 ) param->analyse.inter |= X264_ANALYSE_PSUB8x8; } else { x264_log( NULL, X264_LOG_ERROR, "invalid tune ‘%s‘\n", s ); x264_free( tmp ); return -1; } if( 0 ) { psy_failure: x264_log( NULL, X264_LOG_WARNING, "only 1 psy tuning can be used: ignoring tune %s\n", s ); } s = strtok( NULL, ",./-+" ); } x264_free( tmp ); return 0; }
可以看出x264_param_apply_tune()首先通过strtok()得到存储tune[]数组;然后通过strncasecmp()比较字符串的方法判断当前的tune类型;最后根据tune类型,设定 x264_param_t中相应的参数。
help()
help()用于打印帮助菜单。在x264命令行程序中添加“-h”参数后会调用该函数。该函数的定义如下所示。
//帮助菜单 //longhelp标识是否展开更长的帮助菜单 static void help( x264_param_t *defaults, int longhelp ) { char buf[50]; //H0(),H1(),H2()都是printf() //H1(),H2()只有“长帮助菜单”的情况下才会调用printf() #define H0 printf #define H1 if(longhelp>=1) printf #define H2 if(longhelp==2) printf H0( "x264 core:%d%s\n" "Syntax: x264 [options] -o outfile infile\n" "\n" "Infile can be raw (in which case resolution is required),\n" " or YUV4MPEG (*.y4m),\n" " or Avisynth if compiled with support (%s).\n" " or libav* formats if compiled with lavf support (%s) or ffms support (%s).\n" "Outfile type is selected by filename:\n" " .264 -> Raw bytestream\n" " .mkv -> Matroska\n" " .flv -> Flash Video\n" " .mp4 -> MP4 if compiled with GPAC or L-SMASH support (%s)\n" "Output bit depth: %d (configured at compile time)\n" "\n" "Options:\n" "\n" " -h, --help List basic options\n" " --longhelp List more options\n" " --fullhelp List all options\n" "\n", X264_BUILD, X264_VERSION, #if HAVE_AVS "yes", #else "no", #endif #if HAVE_LAVF "yes", #else "no", #endif #if HAVE_FFMS "yes", #else "no", #endif #if HAVE_GPAC "gpac", #elif HAVE_LSMASH "lsmash", #else "no", #endif x264_bit_depth ); H0( "Example usage:\n" ); H0( "\n" ); H0( " Constant quality mode:\n" ); H0( " x264 --crf 24 -o <output> <input>\n" ); H0( "\n" ); H0( " Two-pass with a bitrate of 1000kbps:\n" ); H0( " x264 --pass 1 --bitrate 1000 -o <output> <input>\n" ); H0( " x264 --pass 2 --bitrate 1000 -o <output> <input>\n" ); H0( "\n" ); H0( " Lossless:\n" ); H0( " x264 --qp 0 -o <output> <input>\n" ); H0( "\n" ); H0( " Maximum PSNR at the cost of speed and visual quality:\n" ); H0( " x264 --preset placebo --tune psnr -o <output> <input>\n" ); H0( "\n" ); H0( " Constant bitrate at 1000kbps with a 2 second-buffer:\n"); H0( " x264 --vbv-bufsize 2000 --bitrate 1000 -o <output> <input>\n" ); H0( "\n" ); H0( "Presets:\n" ); H0( "\n" ); H0( " --profile <string> Force the limits of an H.264 profile\n" " Overrides all settings.\n" ); H2( #if X264_CHROMA_FORMAT <= X264_CSP_I420 #if BIT_DEPTH==8 " - baseline:\n" " --no-8x8dct --bframes 0 --no-cabac\n" " --cqm flat --weightp 0\n" " No interlaced.\n" " No lossless.\n" " - main:\n" " --no-8x8dct --cqm flat\n" " No lossless.\n" " - high:\n" " No lossless.\n" #endif " - high10:\n" " No lossless.\n" " Support for bit depth 8-10.\n" #endif #if X264_CHROMA_FORMAT <= X264_CSP_I422 " - high422:\n" " No lossless.\n" " Support for bit depth 8-10.\n" " Support for 4:2:0/4:2:2 chroma subsampling.\n" #endif " - high444:\n" " Support for bit depth 8-10.\n" " Support for 4:2:0/4:2:2/4:4:4 chroma subsampling.\n" ); else H0( " - " #if X264_CHROMA_FORMAT <= X264_CSP_I420 #if BIT_DEPTH==8 "baseline,main,high," #endif "high10," #endif #if X264_CHROMA_FORMAT <= X264_CSP_I422 "high422," #endif "high444\n" ); H0( " --preset <string> Use a preset to select encoding settings [medium]\n" " Overridden by user settings.\n" ); H2( " - ultrafast:\n" " --no-8x8dct --aq-mode 0 --b-adapt 0\n" " --bframes 0 --no-cabac --no-deblock\n" " --no-mbtree --me dia --no-mixed-refs\n" " --partitions none --rc-lookahead 0 --ref 1\n" " --scenecut 0 --subme 0 --trellis 0\n" " --no-weightb --weightp 0\n" " - superfast:\n" " --no-mbtree --me dia --no-mixed-refs\n" " --partitions i8x8,i4x4 --rc-lookahead 0\n" " --ref 1 --subme 1 --trellis 0 --weightp 1\n" " - veryfast:\n" " --no-mixed-refs --rc-lookahead 10\n" " --ref 1 --subme 2 --trellis 0 --weightp 1\n" " - faster:\n" " --no-mixed-refs --rc-lookahead 20\n" " --ref 2 --subme 4 --weightp 1\n" " - fast:\n" " --rc-lookahead 30 --ref 2 --subme 6\n" " --weightp 1\n" " - medium:\n" " Default settings apply.\n" " - slow:\n" " --b-adapt 2 --direct auto --me umh\n" " --rc-lookahead 50 --ref 5 --subme 8\n" " - slower:\n" " --b-adapt 2 --direct auto --me umh\n" " --partitions all --rc-lookahead 60\n" " --ref 8 --subme 9 --trellis 2\n" " - veryslow:\n" " --b-adapt 2 --bframes 8 --direct auto\n" " --me umh --merange 24 --partitions all\n" " --ref 16 --subme 10 --trellis 2\n" " --rc-lookahead 60\n" " - placebo:\n" " --bframes 16 --b-adapt 2 --direct auto\n" " --slow-firstpass --no-fast-pskip\n" " --me tesa --merange 24 --partitions all\n" " --rc-lookahead 60 --ref 16 --subme 11\n" " --trellis 2\n" ); else H0( " - ultrafast,superfast,veryfast,faster,fast\n" " - medium,slow,slower,veryslow,placebo\n" ); H0( " --tune <string> Tune the settings for a particular type of source\n" " or situation\n" " Overridden by user settings.\n" " Multiple tunings are separated by commas.\n" " Only one psy tuning can be used at a time.\n" ); H2( " - film (psy tuning):\n" " --deblock -1:-1 --psy-rd <unset>:0.15\n" " - animation (psy tuning):\n" " --bframes {+2} --deblock 1:1\n" " --psy-rd 0.4:<unset> --aq-strength 0.6\n" " --ref {Double if >1 else 1}\n" " - grain (psy tuning):\n" " --aq-strength 0.5 --no-dct-decimate\n" " --deadzone-inter 6 --deadzone-intra 6\n" " --deblock -2:-2 --ipratio 1.1 \n" " --pbratio 1.1 --psy-rd <unset>:0.25\n" " --qcomp 0.8\n" " - stillimage (psy tuning):\n" " --aq-strength 1.2 --deblock -3:-3\n" " --psy-rd 2.0:0.7\n" " - psnr (psy tuning):\n" " --aq-mode 0 --no-psy\n" " - ssim (psy tuning):\n" " --aq-mode 2 --no-psy\n" " - fastdecode:\n" " --no-cabac --no-deblock --no-weightb\n" " --weightp 0\n" " - zerolatency:\n" " --bframes 0 --force-cfr --no-mbtree\n" " --sync-lookahead 0 --sliced-threads\n" " --rc-lookahead 0\n" ); else H0( " - psy tunings: film,animation,grain,\n" " stillimage,psnr,ssim\n" " - other tunings: fastdecode,zerolatency\n" ); H2( " --slow-firstpass Don‘t force these faster settings with --pass 1:\n" " --no-8x8dct --me dia --partitions none\n" " --ref 1 --subme {2 if >2 else unchanged}\n" " --trellis 0 --fast-pskip\n" ); else H1( " --slow-firstpass Don‘t force faster settings with --pass 1\n" ); H0( "\n" ); H0( "Frame-type options:\n" ); H0( "\n" ); H0( " -I, --keyint <integer or \"infinite\"> Maximum GOP size [%d]\n", defaults->i_keyint_max ); H2( " -i, --min-keyint <integer> Minimum GOP size [auto]\n" ); H2( " --no-scenecut Disable adaptive I-frame decision\n" ); H2( " --scenecut <integer> How aggressively to insert extra I-frames [%d]\n", defaults->i_scenecut_threshold ); H2( " --intra-refresh Use Periodic Intra Refresh instead of IDR frames\n" ); H1( " -b, --bframes <integer> Number of B-frames between I and P [%d]\n", defaults->i_bframe ); H1( " --b-adapt <integer> Adaptive B-frame decision method [%d]\n" " Higher values may lower threading efficiency.\n" " - 0: Disabled\n" " - 1: Fast\n" " - 2: Optimal (slow with high --bframes)\n", defaults->i_bframe_adaptive ); H2( " --b-bias <integer> Influences how often B-frames are used [%d]\n", defaults->i_bframe_bias ); H1( " --b-pyramid <string> Keep some B-frames as references [%s]\n" " - none: Disabled\n" " - strict: Strictly hierarchical pyramid\n" " - normal: Non-strict (not Blu-ray compatible)\n", strtable_lookup( x264_b_pyramid_names, defaults->i_bframe_pyramid ) ); H1( " --open-gop Use recovery points to close GOPs\n" " Only available with b-frames\n" ); H1( " --no-cabac Disable CABAC\n" ); H1( " -r, --ref <integer> Number of reference frames [%d]\n", defaults->i_frame_reference ); H1( " --no-deblock Disable loop filter\n" ); H1( " -f, --deblock <alpha:beta> Loop filter parameters [%d:%d]\n", defaults->i_deblocking_filter_alphac0, defaults->i_deblocking_filter_beta ); H2( " --slices <integer> Number of slices per frame; forces rectangular\n" " slices and is overridden by other slicing options\n" ); else H1( " --slices <integer> Number of slices per frame\n" ); H2( " --slices-max <integer> Absolute maximum slices per frame; overrides\n" " slice-max-size/slice-max-mbs when necessary\n" ); H2( " --slice-max-size <integer> Limit the size of each slice in bytes\n"); H2( " --slice-max-mbs <integer> Limit the size of each slice in macroblocks (max)\n"); H2( " --slice-min-mbs <integer> Limit the size of each slice in macroblocks (min)\n"); H0( " --tff Enable interlaced mode (top field first)\n" ); H0( " --bff Enable interlaced mode (bottom field first)\n" ); H2( " --constrained-intra Enable constrained intra prediction.\n" ); H0( " --pulldown <string> Use soft pulldown to change frame rate\n" " - none, 22, 32, 64, double, triple, euro (requires cfr input)\n" ); H2( " --fake-interlaced Flag stream as interlaced but encode progressive.\n" " Makes it possible to encode 25p and 30p Blu-Ray\n" " streams. Ignored in interlaced mode.\n" ); H2( " --frame-packing <integer> For stereoscopic videos define frame arrangement\n" " - 0: checkerboard - pixels are alternatively from L and R\n" " - 1: column alternation - L and R are interlaced by column\n" " - 2: row alternation - L and R are interlaced by row\n" " - 3: side by side - L is on the left, R on the right\n" " - 4: top bottom - L is on top, R on bottom\n" " - 5: frame alternation - one view per frame\n" ); H0( "\n" ); H0( "Ratecontrol:\n" ); H0( "\n" ); H1( " -q, --qp <integer> Force constant QP (0-%d, 0=lossless)\n", QP_MAX ); H0( " -B, --bitrate <integer> Set bitrate (kbit/s)\n" ); H0( " --crf <float> Quality-based VBR (%d-51) [%.1f]\n", 51 - QP_MAX_SPEC, defaults->rc.f_rf_constant ); H1( " --rc-lookahead <integer> Number of frames for frametype lookahead [%d]\n", defaults->rc.i_lookahead ); H0( " --vbv-maxrate <integer> Max local bitrate (kbit/s) [%d]\n", defaults->rc.i_vbv_max_bitrate ); H0( " --vbv-bufsize <integer> Set size of the VBV buffer (kbit) [%d]\n", defaults->rc.i_vbv_buffer_size ); H2( " --vbv-init <float> Initial VBV buffer occupancy [%.1f]\n", defaults->rc.f_vbv_buffer_init ); H2( " --crf-max <float> With CRF+VBV, limit RF to this value\n" " May cause VBV underflows!\n" ); H2( " --qpmin <integer> Set min QP [%d]\n", defaults->rc.i_qp_min ); H2( " --qpmax <integer> Set max QP [%d]\n", defaults->rc.i_qp_max ); H2( " --qpstep <integer> Set max QP step [%d]\n", defaults->rc.i_qp_step ); H2( " --ratetol <float> Tolerance of ABR ratecontrol and VBV [%.1f]\n", defaults->rc.f_rate_tolerance ); H2( " --ipratio <float> QP factor between I and P [%.2f]\n", defaults->rc.f_ip_factor ); H2( " --pbratio <float> QP factor between P and B [%.2f]\n", defaults->rc.f_pb_factor ); H2( " --chroma-qp-offset <integer> QP difference between chroma and luma [%d]\n", defaults->analyse.i_chroma_qp_offset ); H2( " --aq-mode <integer> AQ method [%d]\n" " - 0: Disabled\n" " - 1: Variance AQ (complexity mask)\n" " - 2: Auto-variance AQ (experimental)\n", defaults->rc.i_aq_mode ); H1( " --aq-strength <float> Reduces blocking and blurring in flat and\n" " textured areas. [%.1f]\n", defaults->rc.f_aq_strength ); H1( "\n" ); H0( " -p, --pass <integer> Enable multipass ratecontrol\n" " - 1: First pass, creates stats file\n" " - 2: Last pass, does not overwrite stats file\n" ); H2( " - 3: Nth pass, overwrites stats file\n" ); H1( " --stats <string> Filename for 2 pass stats [\"%s\"]\n", defaults->rc.psz_stat_out ); H2( " --no-mbtree Disable mb-tree ratecontrol.\n"); H2( " --qcomp <float> QP curve compression [%.2f]\n", defaults->rc.f_qcompress ); H2( " --cplxblur <float> Reduce fluctuations in QP (before curve compression) [%.1f]\n", defaults->rc.f_complexity_blur ); H2( " --qblur <float> Reduce fluctuations in QP (after curve compression) [%.1f]\n", defaults->rc.f_qblur ); H2( " --zones <zone0>/<zone1>/... Tweak the bitrate of regions of the video\n" ); H2( " Each zone is of the form\n" " <start frame>,<end frame>,<option>\n" " where <option> is either\n" " q=<integer> (force QP)\n" " or b=<float> (bitrate multiplier)\n" ); H2( " --qpfile <string> Force frametypes and QPs for some or all frames\n" " Format of each line: framenumber frametype QP\n" " QP is optional (none lets x264 choose). Frametypes: I,i,K,P,B,b.\n" " K=<I or i> depending on open-gop setting\n" " QPs are restricted by qpmin/qpmax.\n" ); H1( "\n" ); H1( "Analysis:\n" ); H1( "\n" ); H1( " -A, --partitions <string> Partitions to consider [\"p8x8,b8x8,i8x8,i4x4\"]\n" " - p8x8, p4x4, b8x8, i8x8, i4x4\n" " - none, all\n" " (p4x4 requires p8x8. i8x8 requires --8x8dct.)\n" ); H1( " --direct <string> Direct MV prediction mode [\"%s\"]\n" " - none, spatial, temporal, auto\n", strtable_lookup( x264_direct_pred_names, defaults->analyse.i_direct_mv_pred ) ); H2( " --no-weightb Disable weighted prediction for B-frames\n" ); H1( " --weightp <integer> Weighted prediction for P-frames [%d]\n" " - 0: Disabled\n" " - 1: Weighted refs\n" " - 2: Weighted refs + Duplicates\n", defaults->analyse.i_weighted_pred ); H1( " --me <string> Integer pixel motion estimation method [\"%s\"]\n", strtable_lookup( x264_motion_est_names, defaults->analyse.i_me_method ) ); H2( " - dia: diamond search, radius 1 (fast)\n" " - hex: hexagonal search, radius 2\n" " - umh: uneven multi-hexagon search\n" " - esa: exhaustive search\n" " - tesa: hadamard exhaustive search (slow)\n" ); else H1( " - dia, hex, umh\n" ); H2( " --merange <integer> Maximum motion vector search range [%d]\n", defaults->analyse.i_me_range ); H2( " --mvrange <integer> Maximum motion vector length [-1 (auto)]\n" ); H2( " --mvrange-thread <int> Minimum buffer between threads [-1 (auto)]\n" ); H1( " -m, --subme <integer> Subpixel motion estimation and mode decision [%d]\n", defaults->analyse.i_subpel_refine ); H2( " - 0: fullpel only (not recommended)\n" " - 1: SAD mode decision, one qpel iteration\n" " - 2: SATD mode decision\n" " - 3-5: Progressively more qpel\n" " - 6: RD mode decision for I/P-frames\n" " - 7: RD mode decision for all frames\n" " - 8: RD refinement for I/P-frames\n" " - 9: RD refinement for all frames\n" " - 10: QP-RD - requires trellis=2, aq-mode>0\n" " - 11: Full RD: disable all early terminations\n" ); else H1( " decision quality: 1=fast, 11=best\n" ); H1( " --psy-rd <float:float> Strength of psychovisual optimization [\"%.1f:%.1f\"]\n" " #1: RD (requires subme>=6)\n" " #2: Trellis (requires trellis, experimental)\n", defaults->analyse.f_psy_rd, defaults->analyse.f_psy_trellis ); H2( " --no-psy Disable all visual optimizations that worsen\n" " both PSNR and SSIM.\n" ); H2( " --no-mixed-refs Don‘t decide references on a per partition basis\n" ); H2( " --no-chroma-me Ignore chroma in motion estimation\n" ); H1( " --no-8x8dct Disable adaptive spatial transform size\n" ); H1( " -t, --trellis <integer> Trellis RD quantization. [%d]\n" " - 0: disabled\n" " - 1: enabled only on the final encode of a MB\n" " - 2: enabled on all mode decisions\n", defaults->analyse.i_trellis ); H2( " --no-fast-pskip Disables early SKIP detection on P-frames\n" ); H2( " --no-dct-decimate Disables coefficient thresholding on P-frames\n" ); H1( " --nr <integer> Noise reduction [%d]\n", defaults->analyse.i_noise_reduction ); H2( "\n" ); H2( " --deadzone-inter <int> Set the size of the inter luma quantization deadzone [%d]\n", defaults->analyse.i_luma_deadzone[0] ); H2( " --deadzone-intra <int> Set the size of the intra luma quantization deadzone [%d]\n", defaults->analyse.i_luma_deadzone[1] ); H2( " Deadzones should be in the range 0 - 32.\n" ); H2( " --cqm <string> Preset quant matrices [\"flat\"]\n" " - jvt, flat\n" ); H1( " --cqmfile <string> Read custom quant matrices from a JM-compatible file\n" ); H2( " Overrides any other --cqm* options.\n" ); H2( " --cqm4 <list> Set all 4x4 quant matrices\n" " Takes a comma-separated list of 16 integers.\n" ); H2( " --cqm8 <list> Set all 8x8 quant matrices\n" " Takes a comma-separated list of 64 integers.\n" ); H2( " --cqm4i, --cqm4p, --cqm8i, --cqm8p <list>\n" " Set both luma and chroma quant matrices\n" ); H2( " --cqm4iy, --cqm4ic, --cqm4py, --cqm4pc <list>\n" " Set individual quant matrices\n" ); H2( "\n" ); H2( "Video Usability Info (Annex E):\n" ); H2( "The VUI settings are not used by the encoder but are merely suggestions to\n" ); H2( "the playback equipment. See doc/vui.txt for details. Use at your own risk.\n" ); H2( "\n" ); H2( " --overscan <string> Specify crop overscan setting [\"%s\"]\n" " - undef, show, crop\n", strtable_lookup( x264_overscan_names, defaults->vui.i_overscan ) ); H2( " --videoformat <string> Specify video format [\"%s\"]\n" " - component, pal, ntsc, secam, mac, undef\n", strtable_lookup( x264_vidformat_names, defaults->vui.i_vidformat ) ); H2( " --range <string> Specify color range [\"%s\"]\n" " - %s\n", range_names[0], stringify_names( buf, range_names ) ); H2( " --colorprim <string> Specify color primaries [\"%s\"]\n" " - undef, bt709, bt470m, bt470bg, smpte170m,\n" " smpte240m, film, bt2020\n", strtable_lookup( x264_colorprim_names, defaults->vui.i_colorprim ) ); H2( " --transfer <string> Specify transfer characteristics [\"%s\"]\n" " - undef, bt709, bt470m, bt470bg, smpte170m,\n" " smpte240m, linear, log100, log316,\n" " iec61966-2-4, bt1361e, iec61966-2-1,\n" " bt2020-10, bt2020-12\n", strtable_lookup( x264_transfer_names, defaults->vui.i_transfer ) ); H2( " --colormatrix <string> Specify color matrix setting [\"%s\"]\n" " - undef, bt709, fcc, bt470bg, smpte170m,\n" " smpte240m, GBR, YCgCo, bt2020nc, bt2020c\n", strtable_lookup( x264_colmatrix_names, defaults->vui.i_colmatrix ) ); H2( " --chromaloc <integer> Specify chroma sample location (0 to 5) [%d]\n", defaults->vui.i_chroma_loc ); H2( " --nal-hrd <string> Signal HRD information (requires vbv-bufsize)\n" " - none, vbr, cbr (cbr not allowed in .mp4)\n" ); H2( " --filler Force hard-CBR and generate filler (implied by\n" " --nal-hrd cbr)\n" ); H2( " --pic-struct Force pic_struct in Picture Timing SEI\n" ); H2( " --crop-rect <string> Add ‘left,top,right,bottom‘ to the bitstream-level\n" " cropping rectangle\n" ); H0( "\n" ); H0( "Input/Output:\n" ); H0( "\n" ); H0( " -o, --output <string> Specify output file\n" ); H1( " --muxer <string> Specify output container format [\"%s\"]\n" " - %s\n", muxer_names[0], stringify_names( buf, muxer_names ) ); H1( " --demuxer <string> Specify input container format [\"%s\"]\n" " - %s\n", demuxer_names[0], stringify_names( buf, demuxer_names ) ); H1( " --input-fmt <string> Specify input file format (requires lavf support)\n" ); H1( " --input-csp <string> Specify input colorspace format for raw input\n" ); print_csp_names( longhelp ); H1( " --output-csp <string> Specify output colorspace [\"%s\"]\n" " - %s\n", output_csp_names[0], stringify_names( buf, output_csp_names ) ); H1( " --input-depth <integer> Specify input bit depth for raw input\n" ); H1( " --input-range <string> Specify input color range [\"%s\"]\n" " - %s\n", range_names[0], stringify_names( buf, range_names ) ); H1( " --input-res <intxint> Specify input resolution (width x height)\n" ); H1( " --index <string> Filename for input index file\n" ); H0( " --sar width:height Specify Sample Aspect Ratio\n" ); H0( " --fps <float|rational> Specify framerate\n" ); H0( " --seek <integer> First frame to encode\n" ); H0( " --frames <integer> Maximum number of frames to encode\n" ); H0( " --level <string> Specify level (as defined by Annex A)\n" ); H1( " --bluray-compat Enable compatibility hacks for Blu-ray support\n" ); H1( " --avcintra-class <integer> Use compatibility hacks for AVC-Intra class\n" " - 50, 100, 200\n" ); H1( " --stitchable Don‘t optimize headers based on video content\n" " Ensures ability to recombine a segmented encode\n" ); H1( "\n" ); H1( " -v, --verbose Print stats for each frame\n" ); H1( " --no-progress Don‘t show the progress indicator while encoding\n" ); H0( " --quiet Quiet Mode\n" ); H1( " --log-level <string> Specify the maximum level of logging [\"%s\"]\n" " - %s\n", strtable_lookup( log_level_names, cli_log_level - X264_LOG_NONE ), stringify_names( buf, log_level_names ) ); H1( " --psnr Enable PSNR computation\n" ); H1( " --ssim Enable SSIM computation\n" ); H1( " --threads <integer> Force a specific number of threads\n" ); H2( " --lookahead-threads <integer> Force a specific number of lookahead threads\n" ); H2( " --sliced-threads Low-latency but lower-efficiency threading\n" ); H2( " --thread-input Run Avisynth in its own thread\n" ); H2( " --sync-lookahead <integer> Number of buffer frames for threaded lookahead\n" ); H2( " --non-deterministic Slightly improve quality of SMP, at the cost of repeatability\n" ); H2( " --cpu-independent Ensure exact reproducibility across different cpus,\n" " as opposed to letting them select different algorithms\n" ); H2( " --asm <integer> Override CPU detection\n" ); H2( " --no-asm Disable all CPU optimizations\n" ); H2( " --opencl Enable use of OpenCL\n" ); H2( " --opencl-clbin <string> Specify path of compiled OpenCL kernel cache\n" ); H2( " --opencl-device <integer> Specify OpenCL device ordinal\n" ); H2( " --dump-yuv <string> Save reconstructed frames\n" ); H2( " --sps-id <integer> Set SPS and PPS id numbers [%d]\n", defaults->i_sps_id ); H2( " --aud Use access unit delimiters\n" ); H2( " --force-cfr Force constant framerate timestamp generation\n" ); H2( " --tcfile-in <string> Force timestamp generation with timecode file\n" ); H2( " --tcfile-out <string> Output timecode v2 file from input timestamps\n" ); H2( " --timebase <int/int> Specify timebase numerator and denominator\n" " <integer> Specify timebase numerator for input timecode file\n" " or specify timebase denominator for other input\n" ); H2( " --dts-compress Eliminate initial delay with container DTS hack\n" ); H0( "\n" ); H0( "Filtering:\n" ); H0( "\n" ); H0( " --vf, --video-filter <filter0>/<filter1>/... Apply video filtering to the input file\n" ); H0( "\n" ); H0( " Filter options may be specified in <filter>:<option>=<value> format.\n" ); H0( "\n" ); H0( " Available filters:\n" ); x264_register_vid_filters(); x264_vid_filter_help( longhelp ); H0( "\n" ); }
help()中主要有3个宏定义:H0(),H1()和H2()。这三个宏定义实质上都是printf()。它们之间的区别在于:H0()无论如何都会调用print();H1()在longhelp大于等于1的时候才会调用print();而H2()在longhelp等于2时候才会调用print()。
print_version_info()
print_version_info()用于打印x264的版本信息。在x264命令行程序中添加“-V”参数后会调用该函数。该函数的定义如下所示。
//打印版本信息 static void print_version_info( void ) { #ifdef X264_POINTVER printf( "x264 "X264_POINTVER"\n" ); #else printf( "x264 0.%d.X\n", X264_BUILD ); #endif #if HAVE_SWSCALE printf( "(libswscale %d.%d.%d)\n", LIBSWSCALE_VERSION_MAJOR, LIBSWSCALE_VERSION_MINOR, LIBSWSCALE_VERSION_MICRO ); #endif #if HAVE_LAVF printf( "(libavformat %d.%d.%d)\n", LIBAVFORMAT_VERSION_MAJOR, LIBAVFORMAT_VERSION_MINOR, LIBAVFORMAT_VERSION_MICRO ); #endif #if HAVE_FFMS printf( "(ffmpegsource %d.%d.%d.%d)\n", FFMS_VERSION >> 24, (FFMS_VERSION & 0xff0000) >> 16, (FFMS_VERSION & 0xff00) >> 8, FFMS_VERSION & 0xff ); #endif printf( "built on " __DATE__ ", " ); #ifdef __INTEL_COMPILER printf( "intel: %.2f (%d)\n", __INTEL_COMPILER / 100.f, __INTEL_COMPILER_BUILD_DATE ); #elif defined(__GNUC__) printf( "gcc: " __VERSION__ "\n" ); #elif defined(_MSC_FULL_VER) printf( "msvc: %.2f (%u)\n", _MSC_VER / 100.f, _MSC_FULL_VER ); #else printf( "using an unknown compiler\n" ); #endif printf( "configuration: --bit-depth=%d --chroma-format=%s\n", x264_bit_depth, X264_CHROMA_FORMAT ? (output_csp_names[0]+1) : "all" ); printf( "x264 license: " ); #if HAVE_GPL printf( "GPL version 2 or later\n" ); #else printf( "Non-GPL commercial\n" ); #endif #if HAVE_SWSCALE const char *license = swscale_license(); printf( "libswscale%s%s license: %s\n", HAVE_LAVF ? "/libavformat" : "", HAVE_FFMS ? "/ffmpegsource" : "" , license ); if( !strcmp( license, "nonfree and unredistributable" ) || (!HAVE_GPL && (!strcmp( license, "GPL version 2 or later" ) || !strcmp( license, "GPL version 3 or later" )))) printf( "WARNING: This binary is unredistributable!\n" ); #endif }
该函数定义比较浅显易懂,不再详细记录。
x264_param_parse()
x264_param_parse()是一个x264的API。该函数以字符串键值对的方式设置x264_param_t结构体的一个成员变量。该函数的声明如下所示。
/* x264_param_parse: * set one parameter by name. * returns 0 on success, or returns one of the following errors. * note: BAD_VALUE occurs only if it can‘t even parse the value, * numerical range is not checked until x264_encoder_open() or * x264_encoder_reconfig(). * value=NULL means "true" for boolean options, but is a BAD_VALUE for non-booleans. */ int x264_param_parse( x264_param_t *, const char *name, const char *value );
x264_param_parse()的定义如下所示。
//解析以字符串方式输入的参数 //即选项名称和选项值都是字符串 //实质就是通过strcmp()方法 int x264_param_parse( x264_param_t *p, const char *name, const char *value ) { char *name_buf = NULL; int b_error = 0; int name_was_bool; int value_was_null = !value; int i; if( !name ) return X264_PARAM_BAD_NAME; if( !value ) value = "true"; if( value[0] == ‘=‘ ) value++; if( strchr( name, ‘_‘ ) ) // s/_/-/g { char *c; name_buf = strdup(name); while( (c = strchr( name_buf, ‘_‘ )) ) *c = ‘-‘; name = name_buf; } if( (!strncmp( name, "no-", 3 ) && (i = 3)) || (!strncmp( name, "no", 2 ) && (i = 2)) ) { name += i; value = atobool(value) ? "false" : "true"; } name_was_bool = 0; #define OPT(STR) else if( !strcmp( name, STR ) ) #define OPT2(STR0, STR1) else if( !strcmp( name, STR0 ) || !strcmp( name, STR1 ) ) if(0); //OPT()实际上就是strcmp() OPT("asm") { p->cpu = isdigit(value[0]) ? atoi(value) : !strcasecmp(value, "auto") || atobool(value) ? x264_cpu_detect() : 0; if( b_error ) { char *buf = strdup(value); char *tok, UNUSED *saveptr=NULL, *init; b_error = 0; p->cpu = 0; for( init=buf; (tok=strtok_r(init, ",", &saveptr)); init=NULL ) { for( i=0; x264_cpu_names[i].flags && strcasecmp(tok, x264_cpu_names[i].name); i++ ); p->cpu |= x264_cpu_names[i].flags; if( !x264_cpu_names[i].flags ) b_error = 1; } free( buf ); if( (p->cpu&X264_CPU_SSSE3) && !(p->cpu&X264_CPU_SSE2_IS_SLOW) ) p->cpu |= X264_CPU_SSE2_IS_FAST; } } OPT("threads") { if( !strcasecmp(value, "auto") ) p->i_threads = X264_THREADS_AUTO; else p->i_threads = atoi(value); } OPT("lookahead-threads") { if( !strcasecmp(value, "auto") ) p->i_lookahead_threads = X264_THREADS_AUTO; else p->i_lookahead_threads = atoi(value); } OPT("sliced-threads") p->b_sliced_threads = atobool(value); OPT("sync-lookahead") { if( !strcasecmp(value, "auto") ) p->i_sync_lookahead = X264_SYNC_LOOKAHEAD_AUTO; else p->i_sync_lookahead = atoi(value); } OPT2("deterministic", "n-deterministic") p->b_deterministic = atobool(value); OPT("cpu-independent") p->b_cpu_independent = atobool(value); OPT2("level", "level-idc") { if( !strcmp(value, "1b") ) p->i_level_idc = 9; else if( atof(value) < 6 ) p->i_level_idc = (int)(10*atof(value)+.5); else p->i_level_idc = atoi(value); } OPT("bluray-compat") p->b_bluray_compat = atobool(value); OPT("avcintra-class") p->i_avcintra_class = atoi(value); OPT("sar") { b_error = ( 2 != sscanf( value, "%d:%d", &p->vui.i_sar_width, &p->vui.i_sar_height ) && 2 != sscanf( value, "%d/%d", &p->vui.i_sar_width, &p->vui.i_sar_height ) ); } OPT("overscan") b_error |= parse_enum( value, x264_overscan_names, &p->vui.i_overscan ); OPT("videoformat") b_error |= parse_enum( value, x264_vidformat_names, &p->vui.i_vidformat ); OPT("fullrange") b_error |= parse_enum( value, x264_fullrange_names, &p->vui.b_fullrange ); OPT("colorprim") b_error |= parse_enum( value, x264_colorprim_names, &p->vui.i_colorprim ); OPT("transfer") b_error |= parse_enum( value, x264_transfer_names, &p->vui.i_transfer ); OPT("colormatrix") b_error |= parse_enum( value, x264_colmatrix_names, &p->vui.i_colmatrix ); OPT("chromaloc") { p->vui.i_chroma_loc = atoi(value); b_error = ( p->vui.i_chroma_loc < 0 || p->vui.i_chroma_loc > 5 ); } OPT("fps") { if( sscanf( value, "%u/%u", &p->i_fps_num, &p->i_fps_den ) == 2 ) ; else { float fps = atof(value); if( fps > 0 && fps <= INT_MAX/1000 ) { p->i_fps_num = (int)(fps * 1000 + .5); p->i_fps_den = 1000; } else { p->i_fps_num = atoi(value); p->i_fps_den = 1; } } } OPT2("ref", "frameref") p->i_frame_reference = atoi(value); OPT("dpb-size") p->i_dpb_size = atoi(value); OPT("keyint") { if( strstr( value, "infinite" ) ) p->i_keyint_max = X264_KEYINT_MAX_INFINITE; else p->i_keyint_max = atoi(value); } OPT2("min-keyint", "keyint-min") { p->i_keyint_min = atoi(value); if( p->i_keyint_max < p->i_keyint_min ) p->i_keyint_max = p->i_keyint_min; } OPT("scenecut") { p->i_scenecut_threshold = atobool(value); if( b_error || p->i_scenecut_threshold ) { b_error = 0; p->i_scenecut_threshold = atoi(value); } } OPT("intra-refresh") p->b_intra_refresh = atobool(value); OPT("bframes") p->i_bframe = atoi(value); OPT("b-adapt") { p->i_bframe_adaptive = atobool(value); if( b_error ) { b_error = 0; p->i_bframe_adaptive = atoi(value); } } OPT("b-bias") p->i_bframe_bias = atoi(value); OPT("b-pyramid") { b_error |= parse_enum( value, x264_b_pyramid_names, &p->i_bframe_pyramid ); if( b_error ) { b_error = 0; p->i_bframe_pyramid = atoi(value); } } OPT("open-gop") p->b_open_gop = atobool(value); OPT("nf") p->b_deblocking_filter = !atobool(value); OPT2("filter", "deblock") { if( 2 == sscanf( value, "%d:%d", &p->i_deblocking_filter_alphac0, &p->i_deblocking_filter_beta ) || 2 == sscanf( value, "%d,%d", &p->i_deblocking_filter_alphac0, &p->i_deblocking_filter_beta ) ) { p->b_deblocking_filter = 1; } else if( sscanf( value, "%d", &p->i_deblocking_filter_alphac0 ) ) { p->b_deblocking_filter = 1; p->i_deblocking_filter_beta = p->i_deblocking_filter_alphac0; } else p->b_deblocking_filter = atobool(value); } OPT("slice-max-size") p->i_slice_max_size = atoi(value); OPT("slice-max-mbs") p->i_slice_max_mbs = atoi(value); OPT("slice-min-mbs") p->i_slice_min_mbs = atoi(value); OPT("slices") p->i_slice_count = atoi(value); OPT("slices-max") p->i_slice_count_max = atoi(value); OPT("cabac") p->b_cabac = atobool(value); OPT("cabac-idc") p->i_cabac_init_idc = atoi(value); OPT("interlaced") p->b_interlaced = atobool(value); OPT("tff") p->b_interlaced = p->b_tff = atobool(value); OPT("bff") { p->b_interlaced = atobool(value); p->b_tff = !p->b_interlaced; } OPT("constrained-intra") p->b_constrained_intra = atobool(value); OPT("cqm") { if( strstr( value, "flat" ) ) p->i_cqm_preset = X264_CQM_FLAT; else if( strstr( value, "jvt" ) ) p->i_cqm_preset = X264_CQM_JVT; else p->psz_cqm_file = strdup(value); } OPT("cqmfile") p->psz_cqm_file = strdup(value); OPT("cqm4") { p->i_cqm_preset = X264_CQM_CUSTOM; b_error |= parse_cqm( value, p->cqm_4iy, 16 ); b_error |= parse_cqm( value, p->cqm_4py, 16 ); b_error |= parse_cqm( value, p->cqm_4ic, 16 ); b_error |= parse_cqm( value, p->cqm_4pc, 16 ); } OPT("cqm8") { p->i_cqm_preset = X264_CQM_CUSTOM; b_error |= parse_cqm( value, p->cqm_8iy, 64 ); b_error |= parse_cqm( value, p->cqm_8py, 64 ); b_error |= parse_cqm( value, p->cqm_8ic, 64 ); b_error |= parse_cqm( value, p->cqm_8pc, 64 ); } OPT("cqm4i") { p->i_cqm_preset = X264_CQM_CUSTOM; b_error |= parse_cqm( value, p->cqm_4iy, 16 ); b_error |= parse_cqm( value, p->cqm_4ic, 16 ); } OPT("cqm4p") { p->i_cqm_preset = X264_CQM_CUSTOM; b_error |= parse_cqm( value, p->cqm_4py, 16 ); b_error |= parse_cqm( value, p->cqm_4pc, 16 ); } OPT("cqm4iy") { p->i_cqm_preset = X264_CQM_CUSTOM; b_error |= parse_cqm( value, p->cqm_4iy, 16 ); } OPT("cqm4ic") { p->i_cqm_preset = X264_CQM_CUSTOM; b_error |= parse_cqm( value, p->cqm_4ic, 16 ); } OPT("cqm4py") { p->i_cqm_preset = X264_CQM_CUSTOM; b_error |= parse_cqm( value, p->cqm_4py, 16 ); } OPT("cqm4pc") { p->i_cqm_preset = X264_CQM_CUSTOM; b_error |= parse_cqm( value, p->cqm_4pc, 16 ); } OPT("cqm8i") { p->i_cqm_preset = X264_CQM_CUSTOM; b_error |= parse_cqm( value, p->cqm_8iy, 64 ); b_error |= parse_cqm( value, p->cqm_8ic, 64 ); } OPT("cqm8p") { p->i_cqm_preset = X264_CQM_CUSTOM; b_error |= parse_cqm( value, p->cqm_8py, 64 ); b_error |= parse_cqm( value, p->cqm_8pc, 64 ); } OPT("log") p->i_log_level = atoi(value); OPT("dump-yuv") p->psz_dump_yuv = strdup(value); OPT2("analyse", "partitions") { p->analyse.inter = 0; if( strstr( value, "none" ) ) p->analyse.inter = 0; if( strstr( value, "all" ) ) p->analyse.inter = ~0; if( strstr( value, "i4x4" ) ) p->analyse.inter |= X264_ANALYSE_I4x4; if( strstr( value, "i8x8" ) ) p->analyse.inter |= X264_ANALYSE_I8x8; if( strstr( value, "p8x8" ) ) p->analyse.inter |= X264_ANALYSE_PSUB16x16; if( strstr( value, "p4x4" ) ) p->analyse.inter |= X264_ANALYSE_PSUB8x8; if( strstr( value, "b8x8" ) ) p->analyse.inter |= X264_ANALYSE_BSUB16x16; } OPT("8x8dct") p->analyse.b_transform_8x8 = atobool(value); OPT2("weightb", "weight-b") p->analyse.b_weighted_bipred = atobool(value); OPT("weightp") p->analyse.i_weighted_pred = atoi(value); OPT2("direct", "direct-pred") b_error |= parse_enum( value, x264_direct_pred_names, &p->analyse.i_direct_mv_pred ); OPT("chroma-qp-offset") p->analyse.i_chroma_qp_offset = atoi(value); OPT("me") b_error |= parse_enum( value, x264_motion_est_names, &p->analyse.i_me_method ); OPT2("merange", "me-range") p->analyse.i_me_range = atoi(value); OPT2("mvrange", "mv-range") p->analyse.i_mv_range = atoi(value); OPT2("mvrange-thread", "mv-range-thread") p->analyse.i_mv_range_thread = atoi(value); OPT2("subme", "subq") p->analyse.i_subpel_refine = atoi(value); OPT("psy-rd") { if( 2 == sscanf( value, "%f:%f", &p->analyse.f_psy_rd, &p->analyse.f_psy_trellis ) || 2 == sscanf( value, "%f,%f", &p->analyse.f_psy_rd, &p->analyse.f_psy_trellis ) || 2 == sscanf( value, "%f|%f", &p->analyse.f_psy_rd, &p->analyse.f_psy_trellis )) { } else if( sscanf( value, "%f", &p->analyse.f_psy_rd ) ) { p->analyse.f_psy_trellis = 0; } else { p->analyse.f_psy_rd = 0; p->analyse.f_psy_trellis = 0; } } OPT("psy") p->analyse.b_psy = atobool(value); OPT("chroma-me") p->analyse.b_chroma_me = atobool(value); OPT("mixed-refs") p->analyse.b_mixed_references = atobool(value); OPT("trellis") p->analyse.i_trellis = atoi(value); OPT("fast-pskip") p->analyse.b_fast_pskip = atobool(value); OPT("dct-decimate") p->analyse.b_dct_decimate = atobool(value); OPT("deadzone-inter") p->analyse.i_luma_deadzone[0] = atoi(value); OPT("deadzone-intra") p->analyse.i_luma_deadzone[1] = atoi(value); OPT("nr") p->analyse.i_noise_reduction = atoi(value); OPT("bitrate") { p->rc.i_bitrate = atoi(value); p->rc.i_rc_method = X264_RC_ABR; } OPT2("qp", "qp_constant") { p->rc.i_qp_constant = atoi(value); p->rc.i_rc_method = X264_RC_CQP; } OPT("crf") { p->rc.f_rf_constant = atof(value); p->rc.i_rc_method = X264_RC_CRF; } OPT("crf-max") p->rc.f_rf_constant_max = atof(value); OPT("rc-lookahead") p->rc.i_lookahead = atoi(value); OPT2("qpmin", "qp-min") p->rc.i_qp_min = atoi(value); OPT2("qpmax", "qp-max") p->rc.i_qp_max = atoi(value); OPT2("qpstep", "qp-step") p->rc.i_qp_step = atoi(value); OPT("ratetol") p->rc.f_rate_tolerance = !strncmp("inf", value, 3) ? 1e9 : atof(value); OPT("vbv-maxrate") p->rc.i_vbv_max_bitrate = atoi(value); OPT("vbv-bufsize") p->rc.i_vbv_buffer_size = atoi(value); OPT("vbv-init") p->rc.f_vbv_buffer_init = atof(value); OPT2("ipratio", "ip-factor") p->rc.f_ip_factor = atof(value); OPT2("pbratio", "pb-factor") p->rc.f_pb_factor = atof(value); OPT("aq-mode") p->rc.i_aq_mode = atoi(value); OPT("aq-strength") p->rc.f_aq_strength = atof(value); OPT("pass") { int pass = x264_clip3( atoi(value), 0, 3 ); p->rc.b_stat_write = pass & 1; p->rc.b_stat_read = pass & 2; } OPT("stats") { p->rc.psz_stat_in = strdup(value); p->rc.psz_stat_out = strdup(value); } OPT("qcomp") p->rc.f_qcompress = atof(value); OPT("mbtree") p->rc.b_mb_tree = atobool(value); OPT("qblur") p->rc.f_qblur = atof(value); OPT2("cplxblur", "cplx-blur") p->rc.f_complexity_blur = atof(value); OPT("zones") p->rc.psz_zones = strdup(value); OPT("crop-rect") b_error |= sscanf( value, "%u,%u,%u,%u", &p->crop_rect.i_left, &p->crop_rect.i_top, &p->crop_rect.i_right, &p->crop_rect.i_bottom ) != 4; OPT("psnr") p->analyse.b_psnr = atobool(value); OPT("ssim") p->analyse.b_ssim = atobool(value); OPT("aud") p->b_aud = atobool(value); OPT("sps-id") p->i_sps_id = atoi(value); OPT("global-header") p->b_repeat_headers = !atobool(value); OPT("repeat-headers") p->b_repeat_headers = atobool(value); OPT("annexb") p->b_annexb = atobool(value); OPT("force-cfr") p->b_vfr_input = !atobool(value); OPT("nal-hrd") b_error |= parse_enum( value, x264_nal_hrd_names, &p->i_nal_hrd ); OPT("filler") p->rc.b_filler = atobool(value); OPT("pic-struct") p->b_pic_struct = atobool(value); OPT("fake-interlaced") p->b_fake_interlaced = atobool(value); OPT("frame-packing") p->i_frame_packing = atoi(value); OPT("stitchable") p->b_stitchable = atobool(value); OPT("opencl") p->b_opencl = atobool( value ); OPT("opencl-clbin") p->psz_clbin_file = strdup( value ); OPT("opencl-device") p->i_opencl_device = atoi( value ); else return X264_PARAM_BAD_NAME; #undef OPT #undef OPT2 #undef atobool #undef atoi #undef atof if( name_buf ) free( name_buf ); b_error |= value_was_null && !name_was_bool; return b_error ? X264_PARAM_BAD_VALUE : 0; }
x264_param_parse()中判断参数的宏OPT()和OPT2()实质上就是strcmp()。由此可见该函数的流程首先是调用strcmp()判断当前输入参数的名称name,然后再调用atoi(),atof(),或者atobool()等将当前输入参数值value转换成相应类型的值并赋值给对应的参数。
x264_param_apply_profile()
x264_param_apply_profile()是一个x264的API。该函数用于设置x264的profile,它的声明如下所示。
/* (can be NULL, in which case the function will do nothing) * * Does NOT guarantee that the given profile will be used: if the restrictions * of "High" are applied to settings that are already Baseline-compatible, the * stream will remain baseline. In short, it does not increase settings, only * decrease them. * * returns 0 on success, negative on failure (e.g. invalid profile name). */ int x264_param_apply_profile( x264_param_t *, const char *profile );
x264_param_apply_profile()的定义如下所示。
//设置profile int x264_param_apply_profile( x264_param_t *param, const char *profile ) { if( !profile ) return 0; //字符串到整型 int p = profile_string_to_int( profile ); //检查profile设置是否正确 if( p < 0 ) { x264_log( NULL, X264_LOG_ERROR, "invalid profile: %s\n", profile ); return -1; } if( p < PROFILE_HIGH444_PREDICTIVE && ((param->rc.i_rc_method == X264_RC_CQP && param->rc.i_qp_constant <= 0) || (param->rc.i_rc_method == X264_RC_CRF && (int)(param->rc.f_rf_constant + QP_BD_OFFSET) <= 0)) ) { x264_log( NULL, X264_LOG_ERROR, "%s profile doesn‘t support lossless\n", profile ); return -1; } if( p < PROFILE_HIGH444_PREDICTIVE && (param->i_csp & X264_CSP_MASK) >= X264_CSP_I444 ) { x264_log( NULL, X264_LOG_ERROR, "%s profile doesn‘t support 4:4:4\n", profile ); return -1; } if( p < PROFILE_HIGH422 && (param->i_csp & X264_CSP_MASK) >= X264_CSP_I422 ) { x264_log( NULL, X264_LOG_ERROR, "%s profile doesn‘t support 4:2:2\n", profile ); return -1; } if( p < PROFILE_HIGH10 && BIT_DEPTH > 8 ) { x264_log( NULL, X264_LOG_ERROR, "%s profile doesn‘t support a bit depth of %d\n", profile, BIT_DEPTH ); return -1; } //根据不同的Profile做设置 //Baseline基本型 if( p == PROFILE_BASELINE ) { //不支持DCT8x8 param->analyse.b_transform_8x8 = 0; //不使用CABAC param->b_cabac = 0; param->i_cqm_preset = X264_CQM_FLAT; param->psz_cqm_file = NULL; //没有B帧 param->i_bframe = 0; //没有加权 param->analyse.i_weighted_pred = X264_WEIGHTP_NONE; //不支持隔行扫描 if( param->b_interlaced ) { x264_log( NULL, X264_LOG_ERROR, "baseline profile doesn‘t support interlacing\n" ); return -1; } if( param->b_fake_interlaced ) { x264_log( NULL, X264_LOG_ERROR, "baseline profile doesn‘t support fake interlacing\n" ); return -1; } } //Main主型 else if( p == PROFILE_MAIN ) { //不支持DCT8x8 param->analyse.b_transform_8x8 = 0; param->i_cqm_preset = X264_CQM_FLAT; param->psz_cqm_file = NULL; } return 0; }
从定义可以看出,x264_param_apply_profile()首先调用了一个函数profile_string_to_int()将输入的profile字符串转换为int类型的profile;然后会检查该profile的设置是否合理;最后会根据profile对x264_param_t中的参数进行相应的设置。
该函数中调用的profile_string_to_int()的定义如下。
static int profile_string_to_int( const char *str ) { if( !strcasecmp( str, "baseline" ) ) return PROFILE_BASELINE; if( !strcasecmp( str, "main" ) ) return PROFILE_MAIN; if( !strcasecmp( str, "high" ) ) return PROFILE_HIGH; if( !strcasecmp( str, "high10" ) ) return PROFILE_HIGH10; if( !strcasecmp( str, "high422" ) ) return PROFILE_HIGH422; if( !strcasecmp( str, "high444" ) ) return PROFILE_HIGH444_PREDICTIVE; return -1; }
从定义可以看出profile_string_to_int()根据输入的字符串str返回不同的整型变量。
select_output()
select_output()用于设定输出的文件格式。该函数的定义如下所示。
//根据文件名的后缀确定输出的文件格式(raw H264,flv,mp4...) static int select_output( const char *muxer, char *filename, x264_param_t *param ) { //从文件路径字符串中解析出扩展名,存入ext //解析的方式就是反向搜索字符“.” const char *ext = get_filename_extension( filename ); //strcasecmp(char *s1, char *s2)用于忽略大小写比较字符串. //参数s1和s2字符串相等则返回0。s1大于s2则返回大于0 的值,s1 小于s2 则返回小于0的值。 if( !strcmp( filename, "-" ) || strcasecmp( muxer, "auto" ) ) ext = muxer; //后缀为“mp4” if( !strcasecmp( ext, "mp4" ) ) { #if HAVE_GPAC || HAVE_LSMASH cli_output = mp4_output; param->b_annexb = 0; param->b_repeat_headers = 0; if( param->i_nal_hrd == X264_NAL_HRD_CBR ) { x264_cli_log( "x264", X264_LOG_WARNING, "cbr nal-hrd is not compatible with mp4\n" ); param->i_nal_hrd = X264_NAL_HRD_VBR; } #else x264_cli_log( "x264", X264_LOG_ERROR, "not compiled with MP4 output support\n" ); return -1; #endif } else if( !strcasecmp( ext, "mkv" ) ) { //设定cli_output_t cli_output = mkv_output; //不加起始码0x00000001 param->b_annexb = 0; //不再每个Keyframe前面加SPS和PPS param->b_repeat_headers = 0; } else if( !strcasecmp( ext, "flv" ) ) { cli_output = flv_output; param->b_annexb = 0; param->b_repeat_headers = 0; } else cli_output = raw_output;//不符合上述后缀,则输出裸流 return 0; }
从函数定义可以看出,select_output()首先调用get_filename_extension()从输入文件路径的字符串中提取出了扩展名,然后根据不同的扩展名设定不同的输出格式。其中get_filename_extension()是一个提取扩展名的函数,定义如下所示。
//根据“.”确定文件后缀 static inline char *get_filename_extension( char *filename ) { char *ext = filename + strlen( filename ); while( *ext != ‘.‘ && ext > filename ) ext--; ext += *ext == ‘.‘; return ext; }
可以看出get_filename_extension()从字符串的末尾开始向前搜索点符号“.”,并且将“.”后面的内容作为提取出来的扩展名。
select_input()
select_input()用于设定输入的文件格式。该函数的定义如下所示。
//设置输入文件的格式(yuv,y4m...) static int select_input( const char *demuxer, char *used_demuxer, char *filename, hnd_t *p_handle, video_info_t *info, cli_input_opt_t *opt ) { int b_auto = !strcasecmp( demuxer, "auto" ); //从文件路径字符串中解析出扩展名,存入ext //解析的方式就是反向搜索字符“.” const char *ext = b_auto ? get_filename_extension( filename ) : ""; int b_regular = strcmp( filename, "-" ); if( !b_regular && b_auto ) ext = "raw"; b_regular = b_regular && x264_is_regular_file_path( filename ); if( b_regular ) { FILE *f = x264_fopen( filename, "r" ); if( f ) { b_regular = x264_is_regular_file( f ); fclose( f ); } } const char *module = b_auto ? ext : demuxer; //strcasecmp(char *s1, char *s2)用于忽略大小写比较字符串. //参数s1和s2字符串相等则返回0。s1大于s2则返回大于0 的值,s1 小于s2 则返回小于0的值。 if( !strcasecmp( module, "avs" ) || !strcasecmp( ext, "d2v" ) || !strcasecmp( ext, "dga" ) ) { #if HAVE_AVS cli_input = avs_input; module = "avs"; #else x264_cli_log( "x264", X264_LOG_ERROR, "not compiled with AVS input support\n" ); return -1; #endif } else if( !strcasecmp( module, "y4m" ) ) cli_input = y4m_input; else if( !strcasecmp( module, "raw" ) || !strcasecmp( ext, "yuv" ) ) cli_input = raw_input; else { #if HAVE_FFMS if( b_regular && (b_auto || !strcasecmp( demuxer, "ffms" )) && !ffms_input.open_file( filename, p_handle, info, opt ) ) { module = "ffms"; b_auto = 0; cli_input = ffms_input; } #endif #if HAVE_LAVF if( (b_auto || !strcasecmp( demuxer, "lavf" )) && !lavf_input.open_file( filename, p_handle, info, opt ) ) { module = "lavf"; b_auto = 0; cli_input = lavf_input; } #endif #if HAVE_AVS if( b_regular && (b_auto || !strcasecmp( demuxer, "avs" )) && !avs_input.open_file( filename, p_handle, info, opt ) ) { module = "avs"; b_auto = 0; cli_input = avs_input; } #endif if( b_auto && !raw_input.open_file( filename, p_handle, info, opt ) ) { module = "raw"; b_auto = 0; cli_input = raw_input; } FAIL_IF_ERROR( !(*p_handle), "could not open input file `%s‘ via any method!\n", filename ) } strcpy( used_demuxer, module ); return 0; }
从源代码中可以看出,select_input()首先调用get_filename_extension()获取输入文件名的扩展名;然后根据扩展名设置不同的输入格式。
至此x264命令行程序main()函数调用的parse()函数就分析完毕了。下面分析main()函数调用的另一个函数encode()。
encode()
encode()编码YUV为H.264码流,该函数的定义如下所示。
//编码(在内部有一个循环用于一帧一帧编码) static int encode( x264_param_t *param, cli_opt_t *opt ) { x264_t *h = NULL; x264_picture_t pic; cli_pic_t cli_pic; const cli_pulldown_t *pulldown = NULL; // shut up gcc int i_frame = 0; int i_frame_output = 0; int64_t i_end, i_previous = 0, i_start = 0; int64_t i_file = 0; int i_frame_size; int64_t last_dts = 0; int64_t prev_dts = 0; int64_t first_dts = 0; # define MAX_PTS_WARNING 3 /* arbitrary */ int pts_warning_cnt = 0; int64_t largest_pts = -1; int64_t second_largest_pts = -1; int64_t ticks_per_frame; double duration; double pulldown_pts = 0; int retval = 0; opt->b_progress &= param->i_log_level < X264_LOG_DEBUG; /* set up pulldown */ if( opt->i_pulldown && !param->b_vfr_input ) { param->b_pulldown = 1; param->b_pic_struct = 1; pulldown = &pulldown_values[opt->i_pulldown]; param->i_timebase_num = param->i_fps_den; FAIL_IF_ERROR2( fmod( param->i_fps_num * pulldown->fps_factor, 1 ), "unsupported framerate for chosen pulldown\n" ) param->i_timebase_den = param->i_fps_num * pulldown->fps_factor; } //打开编码器 h = x264_encoder_open( param ); FAIL_IF_ERROR2( !h, "x264_encoder_open failed\n" ); //获得参数 x264_encoder_parameters( h, param ); //一些不是裸流的封转格式(FLV,MP4等)需要一些参数,例如宽高等等 //cli_output_t是代表输出媒体文件的结构体 FAIL_IF_ERROR2( cli_output.set_param( opt->hout, param ), "can‘t set outfile param\n" ); //计时 i_start = x264_mdate(); /* ticks/frame = ticks/second / frames/second */ ticks_per_frame = (int64_t)param->i_timebase_den * param->i_fps_den / param->i_timebase_num / param->i_fps_num; FAIL_IF_ERROR2( ticks_per_frame < 1 && !param->b_vfr_input, "ticks_per_frame invalid: %"PRId64"\n", ticks_per_frame ) ticks_per_frame = X264_MAX( ticks_per_frame, 1 ); //如果不是在每个keyframe前面都增加SPS/PPS/SEI的话,就在整个码流前面加SPS/PPS/SEI //Header指的就是SPS/PPS/SEI if( !param->b_repeat_headers ) { // Write SPS/PPS/SEI x264_nal_t *headers; int i_nal; //获得文件头(SPS、PPS、SEI) FAIL_IF_ERROR2( x264_encoder_headers( h, &headers, &i_nal ) < 0, "x264_encoder_headers failed\n" ) //把文件头写入输出文件 FAIL_IF_ERROR2( (i_file = cli_output.write_headers( opt->hout, headers )) < 0, "error writing headers to output file\n" ); } if( opt->tcfile_out ) fprintf( opt->tcfile_out, "# timecode format v2\n" ); /* Encode frames */ //循环进行编码 for( ; !b_ctrl_c && (i_frame < param->i_frame_total || !param->i_frame_total); i_frame++ ) { //从输入源中获取1帧YUV数据,存于cli_pic //cli_vid_filter_t可以认为是x264一种“扩展”后的输入源,可以在像素域对图像进行拉伸裁剪等工作。 //原本代表输入源的结构体是cli_input_t if( filter.get_frame( opt->hin, &cli_pic, i_frame + opt->i_seek ) ) break; //初始化x264_picture_t结构体pic x264_picture_init( &pic ); //cli_pic到pic convert_cli_to_lib_pic( &pic, &cli_pic ); if( !param->b_vfr_input ) pic.i_pts = i_frame; if( opt->i_pulldown && !param->b_vfr_input ) { pic.i_pic_struct = pulldown->pattern[ i_frame % pulldown->mod ]; pic.i_pts = (int64_t)( pulldown_pts + 0.5 ); pulldown_pts += pulldown_frame_duration[pic.i_pic_struct]; } else if( opt->timebase_convert_multiplier ) pic.i_pts = (int64_t)( pic.i_pts * opt->timebase_convert_multiplier + 0.5 ); if( pic.i_pts <= largest_pts ) { if( cli_log_level >= X264_LOG_DEBUG || pts_warning_cnt < MAX_PTS_WARNING ) x264_cli_log( "x264", X264_LOG_WARNING, "non-strictly-monotonic pts at frame %d (%"PRId64" <= %"PRId64")\n", i_frame, pic.i_pts, largest_pts ); else if( pts_warning_cnt == MAX_PTS_WARNING ) x264_cli_log( "x264", X264_LOG_WARNING, "too many nonmonotonic pts warnings, suppressing further ones\n" ); pts_warning_cnt++; pic.i_pts = largest_pts + ticks_per_frame; } second_largest_pts = largest_pts; largest_pts = pic.i_pts; if( opt->tcfile_out ) fprintf( opt->tcfile_out, "%.6f\n", pic.i_pts * ((double)param->i_timebase_num / param->i_timebase_den) * 1e3 ); if( opt->qpfile ) parse_qpfile( opt, &pic, i_frame + opt->i_seek ); prev_dts = last_dts; //编码pic中存储的1帧YUV数据 i_frame_size = encode_frame( h, opt->hout, &pic, &last_dts ); if( i_frame_size < 0 ) { b_ctrl_c = 1; /* lie to exit the loop */ retval = -1; } else if( i_frame_size ) { i_file += i_frame_size; i_frame_output++; if( i_frame_output == 1 ) first_dts = prev_dts = last_dts; } //释放处理完的YUV数据 if( filter.release_frame( opt->hin, &cli_pic, i_frame + opt->i_seek ) ) break; /* update status line (up to 1000 times per input file) */ if( opt->b_progress && i_frame_output ) i_previous = print_status( i_start, i_previous, i_frame_output, param->i_frame_total, i_file, param, 2 * last_dts - prev_dts - first_dts ); } /* Flush delayed frames */ //输出编码器中剩余的帧 //x264_encoder_delayed_frames()返回剩余的帧的个数 while( !b_ctrl_c && x264_encoder_delayed_frames( h ) ) { prev_dts = last_dts; //编码 //注意第3个参数为NULL i_frame_size = encode_frame( h, opt->hout, NULL, &last_dts ); if( i_frame_size < 0 ) { b_ctrl_c = 1; /* lie to exit the loop */ retval = -1; } else if( i_frame_size ) { i_file += i_frame_size; i_frame_output++; if( i_frame_output == 1 ) first_dts = prev_dts = last_dts; } //输出一些统计信息 if( opt->b_progress && i_frame_output ) i_previous = print_status( i_start, i_previous, i_frame_output, param->i_frame_total, i_file, param, 2 * last_dts - prev_dts - first_dts ); } fail: if( pts_warning_cnt >= MAX_PTS_WARNING && cli_log_level < X264_LOG_DEBUG ) x264_cli_log( "x264", X264_LOG_WARNING, "%d suppressed nonmonotonic pts warnings\n", pts_warning_cnt-MAX_PTS_WARNING ); /* duration algorithm fails when only 1 frame is output */ if( i_frame_output == 1 ) duration = (double)param->i_fps_den / param->i_fps_num; else if( b_ctrl_c ) duration = (double)(2 * last_dts - prev_dts - first_dts) * param->i_timebase_num / param->i_timebase_den; else duration = (double)(2 * largest_pts - second_largest_pts) * param->i_timebase_num / param->i_timebase_den; //计时 i_end = x264_mdate(); /* Erase progress indicator before printing encoding stats. */ if( opt->b_progress ) fprintf( stderr, " \r" ); //关闭编码器 if( h ) x264_encoder_close( h ); fprintf( stderr, "\n" ); if( b_ctrl_c ) fprintf( stderr, "aborted at input frame %d, output frame %d\n", opt->i_seek + i_frame, i_frame_output ); //关闭输出文件 cli_output.close_file( opt->hout, largest_pts, second_largest_pts ); opt->hout = NULL; if( i_frame_output > 0 ) { double fps = (double)i_frame_output * (double)1000000 / (double)( i_end - i_start ); fprintf( stderr, "encoded %d frames, %.2f fps, %.2f kb/s\n", i_frame_output, fps, (double) i_file * 8 / ( 1000 * duration ) ); } return retval; }
从源代码可以梳理出来encode()的流程:
(1)调用x264_encoder_open()打开H.264编码器。
(2)调用x264_encoder_parameters()获得当前的参数集x264_param_t,用于后续步骤中的一些配置。
(3)调用输出格式(H.264裸流、FLV、mp4等)对应cli_output_t结构体的set_param()方法,为输出格式的封装器设定参数。其中参数源自于上一步骤得到的x264_param_t。
(4)如果不是在每个keyframe前面都增加SPS/PPS/SEI的话,就调用x264_encoder_headers()在整个码流前面加SPS/PPS/SEI。
(5)进入一个循环中进行一帧一帧的将YUV编码为H.264:a)调用输入格式(YUV、Y4M等)对应的cli_vid_filter_t结构体get_frame()方法,获取一帧YUV数据。
b)调用encode_frame()编码该帧YUV数据为H.264数据,并且输出出来。该函数内部调用x264_encoder_encode()完成编码工作,调用输出格式对应cli_output_t结构体的write_frame()完成了输出工作。
c)调用输入格式(YUV、Y4M等)对应的cli_vid_filter_t结构体release_frame()方法,释放刚才获取的YUV数据。
d)调用print_status()输出一些统计信息。
(6)编码即将结束的时候,进入另一个循环,输出编码器中缓存的视频帧:
a)不再传递新的YUV数据,直接调用encode_frame(),将编码器中缓存的剩余几帧数据编码输出出来。
b)调用print_status()输出一些统计信息。
(7)调用x264_encoder_close()关闭H.264编码器。
encode()的流程中涉及到libx264的几个关键的API,在这里暂时不做详细分析(后续文章中再进行补充):
x264_encoder_open():打开H.264编码器。
x264_encoder_headers():输出SPS/PPS/SEI。
x264_encoder_encode():编码一帧数据。
x264_encoder_close():关闭H.264编码器。
此外上述流程中涉及到两个比较简单的函数:encode_frame()和print_status()。其中encode_frame()用于编码一帧数据,而print_status()用于输出一帧数据编码后的统计信息。下文记录一下这两个函数的定义。
encode_frame()
encode_frame()的定义如下。
//编码1帧 static int encode_frame( x264_t *h, hnd_t hout, x264_picture_t *pic, int64_t *last_dts ) { x264_picture_t pic_out; x264_nal_t *nal; int i_nal; int i_frame_size = 0; //编码API //编码x264_picture_t为x264_nal_t i_frame_size = x264_encoder_encode( h, &nal, &i_nal, pic, &pic_out ); FAIL_IF_ERROR( i_frame_size < 0, "x264_encoder_encode failed\n" ); if( i_frame_size ) { //通过cli_output_t中的方法输出 //输出raw H.264流的话,等同于直接fwrite() //其他封装格式,则还需进行一定的封装 i_frame_size = cli_output.write_frame( hout, nal[0].p_payload, i_frame_size, &pic_out ); *last_dts = pic_out.i_dts; } return i_frame_size; }
从源代码可以看出,encode_frame()内部调用x264_encoder_encode()完成编码工作,调用输出格式对应cli_output_t结构体的write_frame()完成了输出工作。其中有关cli_output_t结构体的知识将在后文中记录。
print_status()
print_status()的定义如下。
//打印一些和时间有关的统计信息 static int64_t print_status( int64_t i_start, int64_t i_previous, int i_frame, int i_frame_total, int64_t i_file, x264_param_t *param, int64_t last_ts ) { char buf[200]; int64_t i_time = x264_mdate(); if( i_previous && i_time - i_previous < UPDATE_INTERVAL ) return i_previous; int64_t i_elapsed = i_time - i_start; double fps = i_elapsed > 0 ? i_frame * 1000000. / i_elapsed : 0; double bitrate; if( last_ts ) bitrate = (double) i_file * 8 / ( (double) last_ts * 1000 * param->i_timebase_num / param->i_timebase_den ); else bitrate = (double) i_file * 8 / ( (double) 1000 * param->i_fps_den / param->i_fps_num ); if( i_frame_total ) { //形成输出的字符串 int eta = i_elapsed * (i_frame_total - i_frame) / ((int64_t)i_frame * 1000000); sprintf( buf, "x264 [%.1f%%] %d/%d frames, %.2f fps, %.2f kb/s, eta %d:%02d:%02d", 100. * i_frame / i_frame_total, i_frame, i_frame_total, fps, bitrate, eta/3600, (eta/60)%60, eta%60 ); } else sprintf( buf, "x264 %d frames: %.2f fps, %.2f kb/s", i_frame, fps, bitrate ); //输出到stderr fprintf( stderr, "%s \r", buf+5 ); //设置到标题栏? x264_cli_set_console_title( buf ); fflush( stderr ); // needed in windows return i_time; }
print_status()的代码不再详细记录,它的输出效果如下图中红框中的文字。
X264控制台程序中和输入输出相关的结构体
在x264控制台程序中有3个和输入输出相关的结构体:
cli_output_t:输出格式对应的结构体。输出格式一般为H.264裸流、FLV、MP4等。
cli_input_t:输入格式对应的结构体。输入格式一般为纯YUV像素数据,Y4M格式数据等。
cli_vid_filter_t:输入格式滤镜结构体。滤镜可以对输入数据做一些简单的处理,例如拉伸、裁剪等等(当然滤镜也可以不作任何处理,直接读取输入数据)。
在x264的编码过程中,调用cli_vid_filter_t结构体的get_frame()读取YUV数据,调用cli_output_t的write_frame()写入数据。下面简单分析一下它们之间的关系。
cli_output_t
x264项目中和cli_output_t结构体相关的源代码都位于根目录的output文件夹下。cli_output_t的定义位于output\output.h,如下所示。
typedef struct { int (*open_file)( char *psz_filename, hnd_t *p_handle, cli_output_opt_t *opt ); int (*set_param)( hnd_t handle, x264_param_t *p_param ); int (*write_headers)( hnd_t handle, x264_nal_t *p_nal ); int (*write_frame)( hnd_t handle, uint8_t *p_nal, int i_size, x264_picture_t *p_picture ); int (*close_file)( hnd_t handle, int64_t largest_pts, int64_t second_largest_pts ); } cli_output_t; extern const cli_output_t raw_output; extern const cli_output_t mkv_output; extern const cli_output_t mp4_output; extern const cli_output_t flv_output;
从源代码中可以看出,cli_output_t中一共包含了open_file(),set_param(),write_headers(),write_frame(),close_file()五个接口。在x264中有raw_output,mkv_output,mp4_output,flv_output这几个cli_output_t结构体,分别对应H.264裸流,MKV,MP4,FLV格式。下面举例看两个结构体:raw_output和flv_output。
raw_output(H.264裸流的cli_output_t结构体)
raw_output的定义位于output\raw.c,该文件内容如下所示。
#include "output.h" static int open_file( char *psz_filename, hnd_t *p_handle, cli_output_opt_t *opt ) { if( !strcmp( psz_filename, "-" ) ) *p_handle = stdout; else if( !(*p_handle = x264_fopen( psz_filename, "w+b" )) ) return -1; return 0; } static int set_param( hnd_t handle, x264_param_t *p_param ) { return 0; } static int write_headers( hnd_t handle, x264_nal_t *p_nal ) { int size = p_nal[0].i_payload + p_nal[1].i_payload + p_nal[2].i_payload; if( fwrite( p_nal[0].p_payload, size, 1, (FILE*)handle ) ) return size; return -1; } static int write_frame( hnd_t handle, uint8_t *p_nalu, int i_size, x264_picture_t *p_picture ) { if( fwrite( p_nalu, i_size, 1, (FILE*)handle ) ) return i_size; return -1; } static int close_file( hnd_t handle, int64_t largest_pts, int64_t second_largest_pts ) { if( !handle || handle == stdout ) return 0; return fclose( (FILE*)handle ); } const cli_output_t raw_output = { open_file, set_param, write_headers, write_frame, close_file };
可以看出raw_output中的函数定义都比较简单,只是封装了fwrite(),fclose()等函数。
flv_output(FLV格式的cli_output_t结构体)
flv_output的定义位于output\flv.c,如下所示。
const cli_output_t flv_output = { open_file, set_param, write_headers, write_frame, close_file };
该文件内容比较多,只举例看一下其中的两个函数:open_file()和write_frame()。
open_file()
flv_output 中的open_file()的定义如下所示。
static int write_header( flv_buffer *c ) { flv_put_tag( c, "FLV" ); // Signature flv_put_byte( c, 1 ); // Version flv_put_byte( c, 1 ); // Video Only flv_put_be32( c, 9 ); // DataOffset flv_put_be32( c, 0 ); // PreviousTagSize0 return flv_flush_data( c ); } static int open_file( char *psz_filename, hnd_t *p_handle, cli_output_opt_t *opt ) { *p_handle = NULL; flv_hnd_t *p_flv = calloc( 1, sizeof(flv_hnd_t) ); if( !p_flv ) return -1; p_flv->b_dts_compress = opt->use_dts_compress; p_flv->c = flv_create_writer( psz_filename ); if( !p_flv->c ) return -1; CHECK( write_header( p_flv->c ) ); *p_handle = p_flv; return 0; }
可以看出flv_output 中的open_file()中完成了FLV封装格式文件头的创建。
write_frame()
flv_output 中的write_frame()的定义如下所示。
static int write_frame( hnd_t handle, uint8_t *p_nalu, int i_size, x264_picture_t *p_picture ) { flv_hnd_t *p_flv = handle; flv_buffer *c = p_flv->c; #define convert_timebase_ms( timestamp, timebase ) (int64_t)((timestamp) * (timebase) * 1000 + 0.5) if( !p_flv->i_framenum ) { p_flv->i_delay_time = p_picture->i_dts * -1; if( !p_flv->b_dts_compress && p_flv->i_delay_time ) x264_cli_log( "flv", X264_LOG_INFO, "initial delay %"PRId64" ms\n", convert_timebase_ms( p_picture->i_pts + p_flv->i_delay_time, p_flv->d_timebase ) ); } int64_t dts; int64_t cts; int64_t offset; if( p_flv->b_dts_compress ) { if( p_flv->i_framenum == 1 ) p_flv->i_init_delta = convert_timebase_ms( p_picture->i_dts + p_flv->i_delay_time, p_flv->d_timebase ); dts = p_flv->i_framenum > p_flv->i_delay_frames ? convert_timebase_ms( p_picture->i_dts, p_flv->d_timebase ) : p_flv->i_framenum * p_flv->i_init_delta / (p_flv->i_delay_frames + 1); cts = convert_timebase_ms( p_picture->i_pts, p_flv->d_timebase ); } else { dts = convert_timebase_ms( p_picture->i_dts + p_flv->i_delay_time, p_flv->d_timebase ); cts = convert_timebase_ms( p_picture->i_pts + p_flv->i_delay_time, p_flv->d_timebase ); } offset = cts - dts; if( p_flv->i_framenum ) { if( p_flv->i_prev_dts == dts ) x264_cli_log( "flv", X264_LOG_WARNING, "duplicate DTS %"PRId64" generated by rounding\n" " decoding framerate cannot exceed 1000fps\n", dts ); if( p_flv->i_prev_cts == cts ) x264_cli_log( "flv", X264_LOG_WARNING, "duplicate CTS %"PRId64" generated by rounding\n" " composition framerate cannot exceed 1000fps\n", cts ); } p_flv->i_prev_dts = dts; p_flv->i_prev_cts = cts; // A new frame - write packet header flv_put_byte( c, FLV_TAG_TYPE_VIDEO ); flv_put_be24( c, 0 ); // calculated later flv_put_be24( c, dts ); flv_put_byte( c, dts >> 24 ); flv_put_be24( c, 0 ); p_flv->start = c->d_cur; flv_put_byte( c, p_picture->b_keyframe ? FLV_FRAME_KEY : FLV_FRAME_INTER ); flv_put_byte( c, 1 ); // AVC NALU flv_put_be24( c, offset ); if( p_flv->sei ) { flv_append_data( c, p_flv->sei, p_flv->sei_len ); free( p_flv->sei ); p_flv->sei = NULL; } flv_append_data( c, p_nalu, i_size ); unsigned length = c->d_cur - p_flv->start; flv_rewrite_amf_be24( c, length, p_flv->start - 10 ); flv_put_be32( c, 11 + length ); // Last tag size CHECK( flv_flush_data( c ) ); p_flv->i_framenum++; return i_size; }
flv_output 中的可以看出write_frame()中完成了FLV封装格式中一个Tag单元的创建。
cli_input_t
x264项目中和cli_input_t结构体相关的源代码都位于根目录的input文件夹下。cli_input_t的定义位于input\input.h,如下所示。
typedef struct { int (*open_file)( char *psz_filename, hnd_t *p_handle, video_info_t *info, cli_input_opt_t *opt ); int (*picture_alloc)( cli_pic_t *pic, int csp, int width, int height ); int (*read_frame)( cli_pic_t *pic, hnd_t handle, int i_frame ); int (*release_frame)( cli_pic_t *pic, hnd_t handle ); void (*picture_clean)( cli_pic_t *pic ); int (*close_file)( hnd_t handle ); } cli_input_t; extern const cli_input_t raw_input; extern const cli_input_t y4m_input; extern const cli_input_t avs_input; extern const cli_input_t lavf_input; extern const cli_input_t ffms_input;
从源代码中可以看出,cli_input_t中一共包含了open_file(),picture_alloc(),read_frame(),release_frame(),picture_clean(),close_file()六个接口。在x264中有raw_input,y4m_input,avs_input,lavf_input,ffms_input这几个cli_output_t结构体,分别对应H.264裸流,Y4M,AVS,LAVF,FFMS格式(后几种没有接触过)。下面举例看两个结构体:raw_input和y4m_input。
raw_input(纯YUV像素数据的cli_input_t结构体)
raw_input的定义位于input\raw.c,该文件内容如下所示。
#include "input.h" #define FAIL_IF_ERROR( cond, ... ) FAIL_IF_ERR( cond, "raw", __VA_ARGS__ ) typedef struct { FILE *fh; int next_frame; uint64_t plane_size[4]; uint64_t frame_size; int bit_depth; } raw_hnd_t; //打开raw YUV格式文件 static int open_file( char *psz_filename, hnd_t *p_handle, video_info_t *info, cli_input_opt_t *opt ) { raw_hnd_t *h = calloc( 1, sizeof(raw_hnd_t) ); if( !h ) return -1; if( !opt->resolution ) { //如果没有设置分辨率 //尝试从文件名中解析分辨率 /* try to parse the file name */ for( char *p = psz_filename; *p; p++ ) if( *p >= ‘0‘ && *p <= ‘9‘ && sscanf( p, "%dx%d", &info->width, &info->height ) == 2 ) break; } else sscanf( opt->resolution, "%dx%d", &info->width, &info->height ); //没有分辨率信息的话,会弹出错误信息 FAIL_IF_ERROR( !info->width || !info->height, "raw input requires a resolution.\n" ) //设置颜色空间 if( opt->colorspace ) { for( info->csp = X264_CSP_CLI_MAX-1; info->csp > X264_CSP_NONE; info->csp-- ) { if( x264_cli_csps[info->csp].name && !strcasecmp( x264_cli_csps[info->csp].name, opt->colorspace ) ) break; } FAIL_IF_ERROR( info->csp == X264_CSP_NONE, "unsupported colorspace `%s‘\n", opt->colorspace ); } else /* default */ info->csp = X264_CSP_I420;//默认为YUV420P //颜色位深 h->bit_depth = opt->bit_depth; FAIL_IF_ERROR( h->bit_depth < 8 || h->bit_depth > 16, "unsupported bit depth `%d‘\n", h->bit_depth ); if( h->bit_depth > 8 ) info->csp |= X264_CSP_HIGH_DEPTH; if( !strcmp( psz_filename, "-" ) ) h->fh = stdin; //从管道输入 else h->fh = x264_fopen( psz_filename, "rb" ); //打开文件 if( h->fh == NULL ) return -1; info->thread_safe = 1; info->num_frames = 0; info->vfr = 0; const x264_cli_csp_t *csp = x264_cli_get_csp( info->csp ); for( int i = 0; i < csp->planes; i++ ) { h->plane_size[i] = x264_cli_pic_plane_size( info->csp, info->width, info->height, i ); h->frame_size += h->plane_size[i]; /* x264_cli_pic_plane_size returns the size in bytes, we need the value in pixels from here on */ h->plane_size[i] /= x264_cli_csp_depth_factor( info->csp ); } if( x264_is_regular_file( h->fh ) ) { fseek( h->fh, 0, SEEK_END ); uint64_t size = ftell( h->fh ); fseek( h->fh, 0, SEEK_SET ); info->num_frames = size / h->frame_size; } *p_handle = h; return 0; } //读取一帧数据-内部 static int read_frame_internal( cli_pic_t *pic, raw_hnd_t *h, int bit_depth_uc ) { int error = 0; int pixel_depth = x264_cli_csp_depth_factor( pic->img.csp ); //一个分量一个分量读 for( int i = 0; i < pic->img.planes && !error; i++ ) { //fread()读取 error |= fread( pic->img.plane[i], pixel_depth, h->plane_size[i], h->fh ) != h->plane_size[i]; if( bit_depth_uc ) { /* upconvert non 16bit high depth planes to 16bit using the same * algorithm as used in the depth filter. */ uint16_t *plane = (uint16_t*)pic->img.plane[i]; uint64_t pixel_count = h->plane_size[i]; int lshift = 16 - h->bit_depth; for( uint64_t j = 0; j < pixel_count; j++ ) plane[j] = plane[j] << lshift; } } return error; } //读取一帧数据 static int read_frame( cli_pic_t *pic, hnd_t handle, int i_frame ) { raw_hnd_t *h = handle; if( i_frame > h->next_frame ) { if( x264_is_regular_file( h->fh ) ) fseek( h->fh, i_frame * h->frame_size, SEEK_SET ); //fseek()。偏移量=帧序号*帧大小。 else while( i_frame > h->next_frame ) { //读取一帧数据-内部 if( read_frame_internal( pic, h, 0 ) ) return -1; h->next_frame++; } } if( read_frame_internal( pic, h, h->bit_depth & 7 ) ) return -1; h->next_frame = i_frame+1; return 0; } //关闭文件 static int close_file( hnd_t handle ) { raw_hnd_t *h = handle; if( !h || !h->fh ) return 0; //fclose()关闭文件 fclose( h->fh ); free( h ); return 0; } //raw格式对应的数组 const cli_input_t raw_input = { open_file, x264_cli_pic_alloc, read_frame, NULL, x264_cli_pic_clean, close_file };
从源代码中可以看出,raw_input 中的open_file()函数在打开YUV像素数据的时候,会首先判断是否设置了宽和高(YUV是纯像素数据,没有宽和高信息),如果没有设置,则会尝试从文件路径中解析宽和高信息。如果成功完成上述步骤,open_file()就会调用x264_fopen()打开输入文件。其他的函数在源代码中都写了注释,就不再重复记录了。
y4m_input(Y4M格式的cli_input_t结构体)
y4m_input的定义位于input\y4m.c,如下所示。
const cli_input_t y4m_input = { open_file, x264_cli_pic_alloc, read_frame, NULL, x264_cli_pic_clean, close_file };
该文件内容较多,不再进行详细分析。在这里看一个打开文件的函数open_file()。该函数的定义如下所示。
typedef struct { FILE *fh; int next_frame; int seq_header_len; int frame_header_len; uint64_t frame_size; uint64_t plane_size[3]; int bit_depth; } y4m_hnd_t; #define Y4M_MAGIC "YUV4MPEG2" #define MAX_YUV4_HEADER 80 #define Y4M_FRAME_MAGIC "FRAME" #define MAX_FRAME_HEADER 80 static int parse_csp_and_depth( char *csp_name, int *bit_depth ) { int csp = X264_CSP_MAX; /* Set colorspace from known variants */ if( !strncmp( "420", csp_name, 3 ) ) csp = X264_CSP_I420; else if( !strncmp( "422", csp_name, 3 ) ) csp = X264_CSP_I422; else if( !strncmp( "444", csp_name, 3 ) && strncmp( "444alpha", csp_name, 8 ) ) // only accept alphaless 4:4:4 csp = X264_CSP_I444; /* Set high bit depth from known extensions */ if( sscanf( csp_name, "%*d%*[pP]%d", bit_depth ) != 1 ) *bit_depth = 8; return csp; } static int open_file( char *psz_filename, hnd_t *p_handle, video_info_t *info, cli_input_opt_t *opt ) { y4m_hnd_t *h = malloc( sizeof(y4m_hnd_t) ); int i; uint32_t n, d; char header[MAX_YUV4_HEADER+10]; char *tokend, *header_end; int colorspace = X264_CSP_NONE; int alt_colorspace = X264_CSP_NONE; int alt_bit_depth = 8; if( !h ) return -1; h->next_frame = 0; info->vfr = 0; if( !strcmp( psz_filename, "-" ) ) h->fh = stdin; else h->fh = x264_fopen(psz_filename, "rb"); if( h->fh == NULL ) return -1; h->frame_header_len = strlen( Y4M_FRAME_MAGIC )+1; /* Read header */ //解析Y4M格式的文件头 for( i = 0; i < MAX_YUV4_HEADER; i++ ) { header[i] = fgetc( h->fh ); if( header[i] == ‘\n‘ ) { /* Add a space after last option. Makes parsing "444" vs "444alpha" easier. */ header[i+1] = 0x20; header[i+2] = 0; break; } } if( i == MAX_YUV4_HEADER || strncmp( header, Y4M_MAGIC, strlen( Y4M_MAGIC ) ) ) return -1; /* Scan properties */ header_end = &header[i+1]; /* Include space */ h->seq_header_len = i+1; for( char *tokstart = &header[strlen( Y4M_MAGIC )+1]; tokstart < header_end; tokstart++ ) { if( *tokstart == 0x20 ) continue; switch( *tokstart++ ) { case ‘W‘: /* Width. Required. */ info->width = strtol( tokstart, &tokend, 10 ); tokstart=tokend; break; case ‘H‘: /* Height. Required. */ info->height = strtol( tokstart, &tokend, 10 ); tokstart=tokend; break; case ‘C‘: /* Color space */ colorspace = parse_csp_and_depth( tokstart, &h->bit_depth ); tokstart = strchr( tokstart, 0x20 ); break; case ‘I‘: /* Interlace type */ switch( *tokstart++ ) { case ‘t‘: info->interlaced = 1; info->tff = 1; break; case ‘b‘: info->interlaced = 1; info->tff = 0; break; case ‘m‘: info->interlaced = 1; break; //case ‘?‘: //case ‘p‘: default: break; } break; case ‘F‘: /* Frame rate - 0:0 if unknown */ if( sscanf( tokstart, "%u:%u", &n, &d ) == 2 && n && d ) { x264_reduce_fraction( &n, &d ); info->fps_num = n; info->fps_den = d; } tokstart = strchr( tokstart, 0x20 ); break; case ‘A‘: /* Pixel aspect - 0:0 if unknown */ /* Don‘t override the aspect ratio if sar has been explicitly set on the commandline. */ if( sscanf( tokstart, "%u:%u", &n, &d ) == 2 && n && d ) { x264_reduce_fraction( &n, &d ); info->sar_width = n; info->sar_height = d; } tokstart = strchr( tokstart, 0x20 ); break; case ‘X‘: /* Vendor extensions */ if( !strncmp( "YSCSS=", tokstart, 6 ) ) { /* Older nonstandard pixel format representation */ tokstart += 6; alt_colorspace = parse_csp_and_depth( tokstart, &alt_bit_depth ); } tokstart = strchr( tokstart, 0x20 ); break; } } if( colorspace == X264_CSP_NONE ) { colorspace = alt_colorspace; h->bit_depth = alt_bit_depth; } // default to 8bit 4:2:0 if nothing is specified if( colorspace == X264_CSP_NONE ) { colorspace = X264_CSP_I420; h->bit_depth = 8; } FAIL_IF_ERROR( colorspace <= X264_CSP_NONE || colorspace >= X264_CSP_MAX, "colorspace unhandled\n" ) FAIL_IF_ERROR( h->bit_depth < 8 || h->bit_depth > 16, "unsupported bit depth `%d‘\n", h->bit_depth ); info->thread_safe = 1; info->num_frames = 0; info->csp = colorspace; h->frame_size = h->frame_header_len; if( h->bit_depth > 8 ) info->csp |= X264_CSP_HIGH_DEPTH; const x264_cli_csp_t *csp = x264_cli_get_csp( info->csp ); for( i = 0; i < csp->planes; i++ ) { h->plane_size[i] = x264_cli_pic_plane_size( info->csp, info->width, info->height, i ); h->frame_size += h->plane_size[i]; /* x264_cli_pic_plane_size returns the size in bytes, we need the value in pixels from here on */ h->plane_size[i] /= x264_cli_csp_depth_factor( info->csp ); } /* Most common case: frame_header = "FRAME" */ if( x264_is_regular_file( h->fh ) ) { uint64_t init_pos = ftell( h->fh ); fseek( h->fh, 0, SEEK_END ); uint64_t i_size = ftell( h->fh ); fseek( h->fh, init_pos, SEEK_SET ); info->num_frames = (i_size - h->seq_header_len) / h->frame_size; } *p_handle = h; return 0; }
从源代码可以看出,y4m_input中的open_file()完成了Y4M文件的打开和文件头解析的功能。
cli_vid_filter_t
x264项目中和cli_vid_filter_t结构体相关的源代码都位于根目录的filters文件夹下。cli_vid_filter_t的定义位于filters\video\video.h,如下所示。
struct cli_vid_filter_t { /* name of the filter */ const char *name; /* help: a short message on what the filter does and how to use it. * this should only be implemented by filters directly accessible by the user */ void (*help)( int longhelp ); /* init: initializes the filter given the input clip properties and parameter to adjust them as necessary * with the given options provided by the user. * returns 0 on success, nonzero on error. */ int (*init)( hnd_t *handle, cli_vid_filter_t *filter, video_info_t *info, x264_param_t *param, char *opt_string ); /* get_frame: given the storage for the output frame and desired frame number, generate the frame accordingly. * the image data returned by get_frame should be treated as const and not be altered. * returns 0 on success, nonzero on error. */ int (*get_frame)( hnd_t handle, cli_pic_t *output, int frame ); /* release_frame: frame is done being used and is signaled for cleanup. * returns 0 on succeess, nonzero on error. */ int (*release_frame)( hnd_t handle, cli_pic_t *pic, int frame ); /* free: run filter cleanup procedures. */ void (*free)( hnd_t handle ); /* next registered filter, unused by filters themselves */ cli_vid_filter_t *next; };
从源代码中可以看出,cli_input_t中一共包含了help(),init(),get_frame(),release_frame(),free()几个接口。下面举例看两个Filter结构体:
source_filter:不作任何处理。
resize_filter:拉伸。
source_filter(没有功能的cli_vid_filter_t结构体)
source_filter的定义位于filters\video\source.c,该文件内容如下所示。
#include "video.h" /* This filter converts the demuxer API into the filtering API for video frames. * Backseeking is prohibited here as not all demuxers are capable of doing so. */ typedef struct { cli_pic_t pic; hnd_t hin; int cur_frame; } source_hnd_t; cli_vid_filter_t source_filter; static int init( hnd_t *handle, cli_vid_filter_t *filter, video_info_t *info, x264_param_t *param, char *opt_string ) { source_hnd_t *h = calloc( 1, sizeof(source_hnd_t) ); if( !h ) return -1; h->cur_frame = -1; if( cli_input.picture_alloc( &h->pic, info->csp, info->width, info->height ) ) return -1; h->hin = *handle; *handle = h; *filter = source_filter; return 0; } static int get_frame( hnd_t handle, cli_pic_t *output, int frame ) { source_hnd_t *h = handle; /* do not allow requesting of frames from before the current position */ if( frame <= h->cur_frame || cli_input.read_frame( &h->pic, h->hin, frame ) ) return -1; h->cur_frame = frame; *output = h->pic; return 0; } static int release_frame( hnd_t handle, cli_pic_t *pic, int frame ) { source_hnd_t *h = handle; if( cli_input.release_frame && cli_input.release_frame( &h->pic, h->hin ) ) return -1; return 0; } static void free_filter( hnd_t handle ) { source_hnd_t *h = handle; cli_input.picture_clean( &h->pic ); cli_input.close_file( h->hin ); free( h ); } cli_vid_filter_t source_filter = { "source", NULL, init, get_frame, release_frame, free_filter, NULL };
从源代码中可以看出,source_filter的get_frame()直接调用了cli_input_t的read_frame();而它的release_frame()也是直接调用了cli_input_t的release_frame()。简而言之,source_filter相当于是一个cli_input_t。
resize_filter(拉伸功能对应的cli_vid_filter_t结构体)
resize_filter的定义位于filters\video\resize.c,该结构体定义如下。
cli_vid_filter_t resize_filter = { NAME, help, init, get_frame, release_frame, free_filter, NULL };
由于resize_filter涉及到的代码比较多,在这里仅看一下它的get_frame()的定义。
static int get_frame( hnd_t handle, cli_pic_t *output, int frame ) { resizer_hnd_t *h = handle; if( h->prev_filter.get_frame( h->prev_hnd, output, frame ) ) return -1; if( h->variable_input && check_resizer( h, output ) ) return -1; h->working = 1; if( h->pre_swap_chroma ) XCHG( uint8_t*, output->img.plane[1], output->img.plane[2] ); if( h->ctx ) { sws_scale( h->ctx, (const uint8_t* const*)output->img.plane, output->img.stride, 0, output->img.height, h->buffer.img.plane, h->buffer.img.stride ); output->img = h->buffer.img; /* copy img data */ } else output->img.csp = h->dst_csp; if( h->post_swap_chroma ) XCHG( uint8_t*, output->img.plane[1], output->img.plane[2] ); return 0; }
可以看出resize_filter中调用了libswscale类库中的sws_scale()对图像完成了拉伸工作。
注:拉伸滤镜需要libswscale类库的支持。
至此cli_output_t,cli_input_t,cli_vid_filter_t这3个在x264中与输入输出有关的结构体的源代码就分析完毕了。有关x264命令行工具的源代码分析工作也就做完了。下一篇文章开始对libx264内部的源代码进行分析。
雷霄骅
[email protected]
http://blog.csdn.net/leixiaohua1020