LintCode刷题笔记-- Edit distance

描述:

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

  • Insert a character
  • Delete a character
  • Replace a character

解题思路:

这一题做的很快,与之前的字符串匹配问题一样,在word1与word2的两个向量上分解字符串,同时遍历两个字符串:分别在两个子串中进行比较,

对于子串中拥有相同的字符的情况下:加入这个字符与不加入这个字符的意义是相同的,不会有更多的变化,所以有公式:

dp[i][j] = dp[i-1][j-1]

当两个子串的匹配的字符不同的情况下:有三种情况可以达到当前状态,修改1位,删除1位,加入1位,三个分别的位置为dp[i-1][j], dp[i][j-1],dp[i-1][j-1]

且三个位置记录着之前状态下,所存在的最小变化情况。所以要在当前状态下达到最小,则需要在之前最小的情况下加上1,所以公式有:

dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1])+1

参考代码:

 public int minDistance(String word1, String word2) {
        // write your code here
        int[][] dp = new int[word1.length()+1][word2.length()+1];

        for(int i = 0; i<=word1.length(); i++){
            dp[i][0] = i;
        }

        for(int j = 0; j<=word2.length(); j++){
            dp[0][j] = j;
        }

        for(int i=1; i<= word1.length(); i++){
            for(int j=1; j<=word2.length(); j++){
                if(word1.charAt(i-1)==word2.charAt(j-1)){
                    dp[i][j] = dp[i-1][j-1];
                }else{
                    dp[i][j] = Math.min(dp[i-1][j-1], Math.min(dp[i-1][j], dp[i][j-1]))+1;
                }
            }
        }

        return dp[word1.length()][word2.length()];

    }
时间: 2024-10-18 04:48:21

LintCode刷题笔记-- Edit distance的相关文章

LintCode刷题笔记(九章ladder PartOne)--BugFree

九章ladder的前半部分刷题笔记,在这次二刷的时候补上~ @ 2017.05.21 141 - sqrtx 二分答案 ---  binarySearch二分法 --- class Solution: """ @param x: An integer @return: The sqrt of x """ def sqrt(self, x): # write your code here if not x: return 0 start, end

刷题72. Edit Distance

一.题目说明 题目72. Edit Distance,计算将word1转换为word2最少需要的操作.操作包含:插入一个字符,删除一个字符,替换一个字符.本题难度为Hard! 二.我的解答 这个题目一点思路也没,就直接看答案了.用的还是dp算法,dp[n1+1][n2+1]中的dp[i][j]表示将word1的前i位,变为word2的前j位需要的步骤.注意第1行是空,第1列也是空. 1.第一行中,dp[0][i]表示空字符""到word2[0,...,i]需要编辑几次 2.第一列中,d

LintCode刷题笔记-- LongestCommonSquence

题目描述: Given two strings, find the longest common subsequence (LCS). Your code should return the length of LCS. 解题思路: 这一题是非常经典的动态规划问题,在解题思路上可以按照经典的动态规划的解法,这是在系统学习动态规划之后第一个解决的LintCode上的问题: 1.子问题划分 给出两个字符串的A,B,两个字符串长度分别为lenA,lenB,求出两个字符串的LCS: 这划分为子问题:A.

LintCode刷题笔记-- Maximal Square

题目描述: Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and return its area. Example For example, given the following matrix: 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 Return 4. 解题思路: 1.这一题明显使用动态规划来解题,开始想法使用动态

LintCode刷题笔记-- BackpackIV

动态规划 描述: Given an integer array nums with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target. Example Given nums = [1, 2, 4], target = 4 The possible combination ways are: [1, 1,

LintCode刷题笔记-- PaintHouse 1&amp;2

动态规划 题目描述: There are a row of n houses, each house can be painted with one of the k colors. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color. The

LintCode刷题笔记-- Maximum Product Subarray

动态规划 描述: Find the contiguous subarray within an array (containing at least one number) which has the largest product. For example, given the array [2,3,-2,4], the contiguous subarray [2,3] has the largest product = 6. 解题思路: 前面几道题有点儿过分依赖答案了,后面还是需要自己主动

LintCode刷题笔记-- BackpackII

标记: 动态规划 问题描述: Given n items with size Ai, an integer m denotes the size of a backpack. How full you can fill this backpack? Example If we have 4 items with size [2, 3, 5, 7], the backpack size is 11, we can select [2, 3, 5], so that the max size we

LintCode刷题笔记-- Distinct Subsequences

题目描述: Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the rel