蓝桥杯 [翻硬币] 贪心

题目链接:http://lx.lanqiao.cn/problem.page?gpid=T29

题目大意:给两个串,初始串和目标串,每一位表示硬币的正反状态。一次操作的定义是让两个相邻的硬币反面。问从初始状态到目标状态所需要的最少操作次数是多少。

关键思想:贪心。要知道如果两个串的某一位不同,那这一位必然要经历奇数次操作,而且先翻或者后翻是没有影响的。那你想,既然是奇数次,那么最好的情况就是一次搞定啊。解决方案是有的,也很容易想——从左到右扫描,一旦扫描到一位不同,就执行一次操作,而此后的所有操作不会再影响这个硬币。而且这样子的话,后面本来需要进行操作的可能顺便和前面的一次做了。也容易理解这种情况就是操作次数做少的。

代码如下:

#include <iostream>
#include <algorithm>
using namespace std;

int main(){
    string a,b;
    cin>>a>>b;
    int cnt=0;
    for(int i=0;i<a.size();i++){
        if(a[i]!=b[i]){
            a[i+1]=a[i+1]==‘*‘?‘o‘:‘*‘;
            cnt++;
        }
    }
    cout<<cnt<<endl;
    return 0;
} 
时间: 2024-10-08 20:50:31

蓝桥杯 [翻硬币] 贪心的相关文章

蓝桥杯--翻硬币

问题描述 小明正在玩一个"翻硬币"的游戏. 桌上放着排成一排的若干硬币.我们用 * 表示正面,用 o 表示反面(是小写字母,不是零). 比如,可能情形是:**oo***oooo 如果同时翻转左边的两个硬币,则变为:oooo***oooo 现在小明的问题是:如果已知了初始状态和要达到的目标状态,每次只能同时翻转相邻的两个硬币,那么对特定的局面,最少要翻动多少次呢? 我们约定:把翻动相邻的两个硬币叫做一步操作,那么要求: 输入格式 两行等长的字符串,分别表示初始状态和要达到的目标状态.每行

蓝桥杯练习系统题解

转于:http://www.cnblogs.com/cshhr/p/3550014.html 蓝桥杯官网练习系统题解(非VIP) BEGIN-4(Fibonacci数列) 有递推公式,大家都知道用递推公式求,仅仅要记得在递推的时候同一时候取模求好 这里给一份另类代码,用矩阵高速幂求,事实上还有循环节 /* (1 1) * (Fn-1) = ( Fn )//矩阵相乘,将就着看吧 (1 0) (Fn-2) (Fn-1) (1 1) * (1 1) * (Fn-2) = ( Fn ) (1 0) (1

【蓝桥杯】历届试题 翻硬币

  历届试题 翻硬币   时间限制:1.0s   内存限制:256.0MB 问题描述 小明正在玩一个“翻硬币”的游戏. 桌上放着排成一排的若干硬币.我们用 * 表示正面,用 o 表示反面(是小写字母,不是零). 比如,可能情形是:**oo***oooo 如果同时翻转左边的两个硬币,则变为:oooo***oooo 现在小明的问题是:如果已知了初始状态和要达到的目标状态,每次只能同时翻转相邻的两个硬币,那么对特定的局面,最少要翻动多少次呢? 我们约定:把翻动相邻的两个硬币叫做一步操作,那么要求: 输

蓝桥杯 历届试题 PREV-34 矩阵翻硬币

历届试题 矩阵翻硬币 时间限制:1.0s   内存限制:256.0MB 问题描述 小明先把硬币摆成了一个 n 行 m 列的矩阵. 随后,小明对每一个硬币分别进行一次 Q 操作. 对第x行第y列的硬币进行 Q 操作的定义:将所有第 i*x 行,第 j*y 列的硬币进行翻转. 其中i和j为任意使操作可行的正整数,行号和列号都是从1开始. 当小明对所有硬币都进行了一次 Q 操作后,他发现了一个奇迹--所有硬币均为正面朝上. 小明想知道最开始有多少枚硬币是反面朝上的.于是,他向他的好朋友小M寻求帮助.

历届试题 矩阵翻硬币 (蓝桥杯)

历届试题 矩阵翻硬币 时间限制:1.0s   内存限制:256.0MB 问题描述 小明先把硬币摆成了一个 n 行 m 列的矩阵. 随后,小明对每一个硬币分别进行一次 Q 操作. 对第x行第y列的硬币进行 Q 操作的定义:将所有第 i*x 行,第 j*y 列的硬币进行翻转. 其中i和j为任意使操作可行的正整数,行号和列号都是从1开始. 当小明对所有硬币都进行了一次 Q 操作后,他发现了一个奇迹——所有硬币均为正面朝上. 小明想知道最开始有多少枚硬币是反面朝上的.于是,他向他的好朋友小M寻求帮助.

蓝桥杯——说好的进阶之砝码称重(贪心算法)

5个砝码 用天平称重时,我们希望用尽可能少的砝码组合称出尽可能多的重量. 如果只有5个砝码,重量分别是1,3,9,27,81.则它们可以组合称出1到121之间任意整数重量(砝码允许放在左右两个盘中). 本题目要求编程实现:对用户给定的重量,给出砝码组合方案. 例如: 用户输入: 5 程序输出: 9-3-1 用户输入: 19 程序输出: 27-9+1 要求程序输出的组合总是大数在前小数在后. 可以假设用户的输入的数字符合范围1~121. public static void main(String

历届试题 翻硬币-(贪心)

问题描述 小明正在玩一个“翻硬币”的游戏. 桌上放着排成一排的若干硬币.我们用 * 表示正面,用 o 表示反面(是小写字母,不是零). 比如,可能情形是:**oo***oooo 如果同时翻转左边的两个硬币,则变为:oooo***oooo 现在小明的问题是:如果已知了初始状态和要达到的目标状态,每次只能同时翻转相邻的两个硬币,那么对特定的局面,最少要翻动多少次呢? 我们约定:把翻动相邻的两个硬币叫做一步操作,那么要求: 输入格式 两行等长的字符串,分别表示初始状态和要达到的目标状态.每行的长度<1

蓝桥 PREV-34 历届试题 矩阵翻硬币

历届试题 矩阵翻硬币 时间限制:1.0s   内存限制:256.0MB 问题描述 小明先把硬币摆成了一个 n 行 m 列的矩阵. 随后,小明对每一个硬币分别进行一次 Q 操作. 对第x行第y列的硬币进行 Q 操作的定义:将所有第 i*x 行,第 j*y 列的硬币进行翻转. 其中i和j为任意使操作可行的正整数,行号和列号都是从1开始. 当小明对所有硬币都进行了一次 Q 操作后,他发现了一个奇迹--所有硬币均为正面朝上. 小明想知道最开始有多少枚硬币是反面朝上的.于是,他向他的好朋友小M寻求帮助.

算法-蓝桥杯习题(七)

蓝桥杯习题 蓝桥杯练习系统习题加答案,总共分为6部分,90%习题使用C语言解答,部分使用C++或者Java.大部分习题为搜索参考或者别人提供所得,不足之处在所难免,恳请批评指正(预计200多题,习题仅供学习交流) 目录 算法训练(详见 算法-蓝桥杯习题(一))Go 算法训练(详见 算法-蓝桥杯习题(二))Go 算法提高(waiting...) 历届试题(详见 算法-蓝桥杯习题(六))Go 历届试题(详见 算法-蓝桥杯习题(七))Go 蓝桥杯练习系统评测数据 链接: http://pan.baid