第12课:Spark Streaming源码解读之Executor容错安全性

一、Spark Streaming 数据安全性的考虑:

  1. Spark Streaming不断的接收数据,并且不断的产生Job,不断的提交Job给集群运行。所以这就涉及到一个非常重要的问题数据安全性。
  2. Spark Streaming是基于Spark Core之上的,如果能够确保数据安全可好的话,在Spark Streaming生成Job的时候里面是基于RDD,即使运行的时候出现问题,那么Spark Streaming也可以借助Spark Core的容错机制自动容错。
  3. 对Executor容错主要是对数据的安全容错
  4. 为啥这里不考虑对数据计算的容错:计算的时候Spark Streaming是借助于Spark Core之上的容错的,所以天然就是安全可靠的。

Executor容错方式: 
1. 最简单的容错是副本方式,基于底层BlockManager副本容错,也是默认的容错方式。

2.WAL日志方式

3. 接收到数据之后不做副本,支持数据重放,所谓重放就是支持反复读取数据。

BlockManager备份:

  1. 默认在内存中两份副本,也就是Spark Streaming的Receiver接收到数据之后存储的时候指定StorageLevel为MEMORY_AND_DISK_SER_2,底层存储是交给BlockManager,BlockManager的语义确保了如果指定了两份副本,一般都在内存中。所以至少两个Executor中都会有数据。

Receiver将数据交给BlockManger是由ReceiveredBlockHandler来处理的,有两种ReceiveredBlockHandler的实现:

1.WriteAheadLogBasedBlockHandler

2.BlockManagerBasedBlockHandler

这里的storageLevel是构建InputDStream时传入的,socketTextStream的默认存储级别是StorageLevel.MEMORY_AND_DISK_SER_2

如果使用WriteAheadLogBasedBlockHandler需要开启WAL,默认并没有开启:


WAL日志方式:

这种方式会现将数据写入日志文件,就是checkpoint目录,出现异常是,从checkpoint目录重新读取数据,进行恢复。启动WAL时候,没必要将副本数设置成大于1,也不需要序列化。

WAL会将数据同时写入BlockManager和write ahead log,而且是并行的写block,当然两处的block存储完成,才会返回。

将Block 存入BlockManager:

将Block 存入WAL日志:

WAL写数据的时候是顺序写,数据不可修改,所以读的时候只需要按照指针(也就是要读的record在那,长度是多少)读即可。所以WAL的速度非常快。
浏览一下WriteAheadLog,他是一个抽象类:
看一下WriteAheadLog的一个实现类FileBasedWriteAheadLog的write方法:
根据不同时间获取不同Writer将序列化结果写入文件,返回一个FileBasedWriteAheadLogSegment类型的对象fileSegment。
读数据:
其中创建了一个FileBaseWriteAheadLogRandomReader对象,然后调用了该对象的read方法:

支持数据重放。

在实际的开发中直接使用Kafka,因为不需要容错,也不需要副本。 
Kafka有Receiver方式和Direct方式 
Receiver方式:是交给Zookeeper去管理数据的,也就是偏移量offSet.如果失效后,Kafka会基于offSet重新读取,因为处理数据的时候中途崩溃,不会给Zookeeper发送ACK,此时Zookeeper认为你并没有消息这个数据。但是在实际中越来用的越多的是Direct的方式直接操作offSet.而且还是自己管理offSet.

  1. DirectKafkaInputDStream会去查看最新的offSet,并且把offSet放到Batch中。
  2. 在Batch每次生成的时候都会调用latestLeaderOffsets查看最近的offSet,此时的offSet就会与上一个offSet相减获得这个Batch的范围。这样就可以知道读那些数据。
protected final def latestLeaderOffsets(retries: Int): Map[TopicAndPartition, LeaderOffset] = {
  val o = kc.getLatestLeaderOffsets(currentOffsets.keySet)
  // Either.fold would confuse @tailrec, do it manuallyif (o.isLeft) {
    val err = o.left.get.toString
    if (retries <= 0) {
      throw new SparkException(err)
    } else {
      log.error(err)
      Thread.sleep(kc.config.refreshLeaderBackoffMs)
      latestLeaderOffsets(retries - 1)
    }
  } else {
    o.right.get
  }
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

From WizNote

时间: 2024-10-29 19:11:15

第12课:Spark Streaming源码解读之Executor容错安全性的相关文章

(版本定制)第12课:Spark Streaming源码解读之Executor容错安全性

本期内容: 1.Executor的WAL容错机制 2.消息重放 Executor的安全容错主要是数据的安全容错,那为什么不考虑数据计算的安全容错呢? 原因是计算的时候Spark Streaming是借助于Spark Core上RDD的安全容错的,所以天然的安全可靠的. Executor的安全容错主要有: 1.数据副本: 有两种方式:a.借助底层的BlockManager,BlockManager做备份,通过传入的StorageLevel进行备份. b. WAL方式进行容错. 2.接受到数据之后,

Spark Streaming源码解读之Executor容错安全性

本期内容 : Executor的WAL 消息重放 数据安全的角度来考虑整个Spark Streaming : 1. Spark Streaming会不断次序的接收数据并不断的产生Job ,不断的提交Job到集群运行,至关重要的问题接收数据安全性 2. 由于Spark Streaming是基于Spark Core基础之上的,即是说运行过程中出现错误或者故障,Spark Streaming也可以借助 Spark Core中RDD的容错的能力自动的进行恢复,恢复的前提是数据的安全可靠. 所以Execu

(版本定制)第13课:Spark Streaming源码解读之Driver容错安全性

本期内容:1. ReceiverBlockTracker容错安全性 2. DStream和JobGenerator容错安全性 一:容错安全性 1. ReceivedBlockTracker负责管理Spark Streaming运行程序的元数据.数据层面 2. DStream和JobGenerator是作业调度的核心层面,也就是具体调度到什么程度了,从运行的考虑的.DStream是逻辑层面. 3. 作业生存层面,JobGenerator是Job调度层面,具体调度到什么程度了.从运行的角度的. 谈D

第13课:Spark Streaming源码解读之Driver容错安全性

本期内容: ReceivedBlockTracker容错安全性 DStream和JobGenerator容错安全性 Driver的容错有两个层面:1. Receiver接收数据的元数据 2. Driver管理的各组件信息(调度和驱动层面) 元数据采用了WAL的容错机制 case AddBlock(receivedBlockInfo) =>   if (WriteAheadLogUtils.isBatchingEnabled(ssc.conf, isDriver = true)) {     wa

Spark发行版笔记13:Spark Streaming源码解读之Driver容错安全性

本节的主要内容: 一.ReceivedBlockTracker容错安全性 二.DStreamGraph和JobGenerator容错安全性 从数据层面,ReceivedBlockTracker为整个Spark Streaming应用程序记录元数据信息. 从调度层面,DStreamGraph和JobGenerator是Spark Streaming调度的核心,记录当前调度到哪一进度,和业务有关. ReceivedBlockTracker在接收到元数据信息后调用addBlock方法,先写入磁盘中,然

Spark 定制版:009~Spark Streaming源码解读之Receiver在Driver的精妙实现全生命周期彻底研究和思考

本讲内容: a. Receiver启动的方式设想 b. Receiver启动源码彻底分析 注:本讲内容基于Spark 1.6.1版本(在2016年5月来说是Spark最新版本)讲解. 上节回顾 上一讲中,我们给大家具体分析了RDD的物理生成和逻辑生成过程,彻底明白DStream和RDD之间的关系,及其内部其他有关类的具体依赖等信息: a. DStream是RDD的模板,其内部generatedRDDs 保存了每个BatchDuration时间生成的RDD对象实例.DStream的依赖构成了RDD

第15课:Spark Streaming源码解读之No Receivers彻底思考

本期内容: Direct Access Kafka 前面有几期我们讲了带Receiver的Spark Streaming 应用的相关源码解读.但是现在开发Spark Streaming的应用越来越多的采用No Receivers(Direct Approach)的方式,No Receiver的方式的优势: 1. 更强的控制自由度 2. 语义一致性 其实No Receivers的方式更符合我们读取数据,操作数据的思路的.因为Spark 本身是一个计算框架,他底层会有数据来源,如果没有Receive

15、Spark Streaming源码解读之No Receivers彻底思考

在前几期文章里讲了带Receiver的Spark Streaming 应用的相关源码解读,但是现在开发Spark Streaming的应用越来越多的采用No Receivers(Direct Approach)的方式,No Receiver的方式的优势: 1. 更强的控制自由度 2. 语义一致性 其实No Receivers的方式更符合我们读取数据,操作数据的思路的.因为Spark 本身是一个计算框架,他底层会有数据来源,如果没有Receivers,我们直接操作数据来源,这其实是一种更自然的方式

Spark发行版笔记10:Spark Streaming源码解读之流数据不断接收和全生命周期彻底研究和思考

本节的主要内容: 一.数据接受架构和设计模式 二.接受数据的源码解读 Spark Streaming不断持续的接收数据,具有Receiver的Spark 应用程序的考虑. Receiver和Driver在不同进程,Receiver接收数据后要不断给Deriver汇报. 因为Driver负责调度,Receiver接收的数据如果不汇报给Deriver,Deriver调度时不会把接收的数据计算入调度系统中(如:数据ID,Block分片). 思考Spark Streaming接收数据: 不断有循环器接收