MySQL分页优化中的“INNER JOIN方式优化分页算法”到底在什么情况下会生效?

本文出处:http://www.cnblogs.com/wy123/p/7003157.html

最近无意间看到一个MySQL分页优化的测试案例,并没有非常具体地说明测试场景的情况下,给出了一种经典的方案,
因为现实中很多情况都不是固定不变的,能总结出来通用性的做法或者说是规律,是要考虑非常多的场景的,
同时,面对能够达到优化的方式要追究其原因,同样的做法,换了个场景,达不到优化效果的,还要追究其原因。
个人对此场景在不用情况表示怀疑,然后自己测试了一把,果然发现一些问题,同时也证实了一些预期的想法。
本文就MySQL分页优化,从最最简单的情况出发,来做一个简单的分析。

另:本文测试环境是最最低配置的云服务器,相对来说服务器硬件环境有限,不过对于不同的语句(写法)应该是“平等的”

MySQL经典的分页“优化”做法

MySQL分页优化中,有一种经典的问题,在查询越“靠后”的数据越慢(取决于表上的索引类型,对于B树结构的索引,SQL Server中也一样)
select * from t order by id limit m,n。
也即随着M的增大,查询同样多的数据,会越来越慢
面对这一问题,于是就产生了一种经典的做法,类似于(或者变种)如下的写法
就是先把分页范围内的id单独找出来,然后再跟基表做关联,最后查询出来所需要的数据
select * from t
inner join (select id from t order by id limit m,n)t1 on t1.id = t.id

这种做法是不是总是生效的,或者说是在什么情况下后者才能到达到优化的目的?有没有做了改写之后无效甚至变慢的情况?

与此同时,绝大多数查询都是有筛选条件的,
如果有筛选条件的情况,
sql语句就变成了select * from t where *** order by id limit m,n
如果如法炮制,改写成类似
select * from t
inner join (select id from t where *** order by id limit m,n )t1 on t1.id = t.id
在这种情况下,改写后的sql语句还能达到优化的目的吗?

测试环境搭建

  测试数据比较简单,通过存储过程循环写入测试数据,测试表的InnoDB引擎表。

  

  这里要注意的是日志写入模式一定要修改成sync_binlog = 0,否则默认情况下,500w数据,估计一天都写不完,这个与日志写入模式有关,就不多说了,

分页查询优化的缘由

  首先还是先看一下这个经典的问题,分页的时候,越“靠后”查询相应越慢的情况

  测试一:查询第1-20行的数据,0.01秒

  

  同样是查询20行数据,查询相对“靠后”的数据,比如这里的从4900001-4900020行数据的情况,用时1.97秒。

  

  从中可以看到,查询条件不变的情况下,越往后查询,查询效率越低,可以简单理解成:同样搜索20行数据,越是靠后的数据,查询代价越大。
  至于为什么后一种效率较低,后面会慢慢分析。

  测试环境是centos 7 ,mysql 5.7,测试表的数据是500W

  

重现经典分页“优化”,当没有筛选条件,排序列为聚集索引的时候,并不会有所改善

这里来日下两种写法在聚集索引列作为排序条件时候的性能
select * from t order by id limit m,n。
select * from t
inner join (select id from t order by id limit m,n)t1 on t1.id = t.id

  第一种写法:

  select * from test_table1 order by id asc limit 4900000,20;测试结果见截图,执行时间为8.31秒

第二种改写后的写法:

select t1.* from test_table1 t1
inner join (select id from test_table1 order by id limit 4900000,20)t2 on t1.id = t2.id;执行时间为8.43秒

这里很清楚,通过经典的改写方法改写之后,性能能毫无提升,甚至还有一点点变慢了,
实际测试上表现为两者在性能上并没有明显的线性差异,这两者楼主是做了多次测试的。

我个人看到类似结论非要测一下不可的,这个东西不能靠蒙,或者靠运气什么的,能提高效率是为什么,不能提高又是为什么。

那么为什么改写之后的写法没有像传说中的那种提升性能?
是什么导致当前这个改写没有到达提升性能的目的?
后者能够提升性能的原理是什么?

  首先看一下测试表的表结构,排序列上是有索引,这一点是没有问题的,关键是这个排序列上的索引是主键(聚集索引)。

  

  为什么排序列上是聚集索引的时候,相对“优化”改写之后的sql并不能达到“优化”的目的?

在排序列为聚集索引列的情况下,两者都是顺序扫描表来实现查询符合条件的数据的
后者虽然是先驱动一个子查询,然后再用子查询的结果驱动主表,
但是子查询并没有改变“顺序扫描表来实现查询符合条件的数据的”做法,但前情况下,甚至改写后的做法显得画蛇添足

参考如下两者执行计划,第一个截图的执行计划的一行,与改写后的sql的执行计划的第三行(id =2 的那一行),基本上一样。

  

  

当没有筛选条件,排序列为聚集索引时候的分页查询,所谓的分页查询优化只不过是画蛇添足

  目前来看,查询上述数据,两种方式都非常慢,那如果要查询上述的数据,该如何做?
  还是要看为什么慢,首先要理解B数的平衡性结构,在我自己粗略的理解来看,如下图,
  当查询的数据“靠后”的时候,实际上是偏离在B树索引的一个方向,如下两个截图所示的目标数据
  其实平衡树上的数据,没有所谓的“考前”与“靠后”,“考前”与“靠后”都是相对于对方来说的,或者说是从扫描的方向上来看的
  从一个方向上看“靠后的”数据,从一个方向看就是“靠前的”,前后不是绝对的。

  如下两个截图是B树索引结构的粗略表现形式,假如目标数据的位置固定的情况下,所谓的“靠后”是相对与从左向右来说的;

如果从右向左看,之前所谓靠后的数据实际上是“靠前”的。

  只要数据是靠前的,要高效低找到这部分数据,还是可以的。mysql中应该也有类似于sqlserver中的正向(forwarded)和反向扫描(backward)的做法。

  如果对于靠后的数据,采用反向扫描,应该就可以很快找到这个部分数据,然后对找到的数据在再次排序(asc),结果应该是一样的,
  首先来看效果:结果跟上面的查询一模一样,这里仅耗时0.07秒,之前的两种写法均超过了8秒,效率有上百倍的差距。

  

  至于这个是为什么,我想根据上面的阐述,自己应该能够体会的到,这里附上这个sql。
  如果经常查询所谓的靠后的数据,比如说Id较大的数据,或者说是时间维度上较新的数据,可以采用倒叙扫描索引的方式来实现高效分页查询

select* from
(
    select * from test_table1 order by id desc limit 99980,20

) t order by id;

当没有筛选条件,排序列为非聚集索引的时候,会有所改善

  这里对测试表test_table1做出如下改变
  1,增加一个id_2列,
  2,该字段上创建一个唯一索引,
  3,该字段用对应的主键Id填充

  

  上面的测试是按照主键索引(聚集索引)来排序的,现在来按照非聚集索引排序,也即新增的这个列id_2来排序,测试一开始提到的两种分页方法。

  首先来看第一种写法

  select * from test_table1 order by id_2 asc limit 4900000,20;执行时间为1分钟多一点,暂且认其为60秒

  

  第二种写法

select t1.* from test_table1 t1
inner join (select id from test_table1 order by id_2 limit 4900000,20)t2 on t1.id = t2.id;执行时间1.67秒

  

  从这种情况来看,也就是说排序列为非聚集索引列的时候,后一种写法确实能大幅度地提升效率。差不多有40倍的提升。
  那么原因在何呢?
  首先来看第一种写法的执行计划,可以简单理解为这个sql的执行时做全表扫描之后,然后重新按照id_2排序,最后取最前20条数据。
  首先全表扫描就是一个非常耗时的过程,排序也是一个非常大的代价,因此表现为性能非常的低下。

  

  再来看后者的执行计划,他是首先子子查询中,按照id_2上的索引顺序扫描,然后用符合条件的主键Id去表中查询数据
  这样的话,避免了查询出来大量的数据然后重新排序(Using filesort)
  如果了解sqlserver执行计划的情况下,后者与前者相比,应该还有避免了频繁的回表(sqlserver中叫做key lookup或者书签查找的过程
  可以认为是子查询驱动外层表查询符合条件的20条的数据的过程是一个批量的,一次性的。

  

  其实,只有在当前情况下,也就是说排序列为非聚集索引列的时候,改写后的sql才能提升分页查询的效率。
  即便如此,此方式“优化”过的分页语句,还是与如下写法的分页效率有比较大的差别的
  上面也看到了,返回同样的数据,如下的查询是0.07秒,比这里的1.67秒还是高2个数量级的

select* from
(
    select * from test_table1 order by id desc limit 99980,20

) t order by id;

  另外一个,想提到的问题就是,如果经常性分页查询,还要按照某种顺序,那么为什么不在这个列上建立一个聚集索引。
  比如语句自增Id的,或者时间+其他字段确保唯一性的,mysql会在主键上自动创建聚集索引。
  然后有了聚集索引,“靠前”与“靠后”仅仅是一个相对的逻辑上的概念了,如果多数时候是想得到“靠后”或者较新的数据,就可以采用上述写法,

当存在筛选条件的情况下,分页查询的优化

  这一部分想了想,情况太复杂了,很难概括出来一种非常具有代表性的案例,因此就不过多地做测试了。
  select * from t where *** order by id limit m,n
  1,比如刷选条件本身就很高效,一过滤出来仅剩下很少一部分数据,那么改不改写sql意义也不大,因为筛选条件本身就可以做到很高效的筛选
  2,比如刷选条件本身作用不大(过滤后数据量依然巨大),这种情况其实又回到了不存在筛选条件的情况,还有取决于如何排序,正序还是倒叙等等
  3,比如筛选条件本身作用不大(过滤后数据量依然巨大),要考虑的一个很实际的问题是数据分布,
    数据的分布也会影响的sql的执行效率(sqlserver中的经历,mysql应该差别不大)
  4,本身查询比较复杂的情况下,很难说用某种方式就可以达到高效的目的

  情况越复杂,越是难以总结出来一种通用性的规律或者说是方法,一切都要以具体情况来看待,很难下一个定论。
  这里对于查询加上筛选条件的情况,就不做一一分析了,不过可以肯定的是,脱离了实际场景,肯定没有一个固化的方案。

  另外,对于查询当前页数据时候,利用上一页查询的最大值做筛选条件,也可以很快滴找到当前页的数据,这样当然没有问题,但这属于另外一个做法,不在本文讨论之列。

总结

分页查询,越靠后越慢的情况,实则对于B树索引来说,靠前与靠后是一个逻辑上相对的概念,性能上的差异,是基于B树索引结构以及扫描方式有关的.
如果加上筛选条件,情况将变得更加复杂,这个问题在SQL Server中的原理也是一样的,本来也在SQL Server中做了测试的,这里就不重复了。
当前这种情况,排序列不一定,查询条件不一定,数据分布不一定,就很难用一种特定的方法来实现“优化”,弄不好还起到画蛇添足的副作用。
因此在做分页优化的时候,一定要根据具体的场景来做分析,方法也不一定只有一种,脱离实际场景的结论,都是扯犊子。
唯有弄清楚这个问题的来龙去脉,才能游刃有余。
因此个人对于数据“优化”的结论,一定是具体问题具体分析,是很忌讳总结出来一套规则(规则1,2,3,4,5)给人“套用”,鉴于本人也很菜,就更不敢总结出来一些教条了。

  

时间: 2024-10-12 23:27:00

MySQL分页优化中的“INNER JOIN方式优化分页算法”到底在什么情况下会生效?的相关文章

Java中只有按值传递,没有按引用传递!(两种参数情况下都是值传递)

今天,我在一本面试书上看到了关于java的一个参数传递的问题: 写道 java中对象作为参数传递给一个方法,到底是值传递,还是引用传递? 我毫无疑问的回答:“引用传递!”,并且还觉得自己对java的这一特性很是熟悉! 结果发现,我错了! 答案是: 值传递!Java中只有按值传递,没有按引用传递! 回家后我就迫不及待地查询了这个问题,觉得自己对java这么基础的问题都搞错实在太丢人! 综合网上的描述,我大概了解了是怎么回事,现在整理如下,如有不对之处望大神提出! 先来看一个作为程序员都熟悉的值传递

PHP中的Session储存方式优化

1:查看当前PHP版本中Seesion支持的储存方式   可以看出当前Session支持的储存方式有以下几种 files:文件模式,PHP默认的储存方式,把储存的值放在服务器的指定目录里 user:用户模式,暂时不了解 redis:支持redis储存.通过上面的图,可以看出当前session是redis储存,并指定了连接信息 memcache:支持memcache储存 2:redis|memcache储存的配置方式(支持redis|memcache拓展) 一:php.ini配置(推荐) sess

1122MySQL性能优化之 Nested Loop Join和Block Nested-Loop Join(BNL)

转自http://blog.itpub.net/22664653/viewspace-1692317/ 一 介绍  相信许多开发/DBA在使用MySQL的过程中,对于MySQL处理多表关联的方式或者说性能一直不太满意.对于开发提交的含有join的查询,一般比较抗拒,从而建议将join拆分,避免join可能带来的性能问题,同时也增加了程序和DB的网络交互.5.5 版本之前,MySQL本身只支持一种表间关联方式,就是嵌套循环(Nested Loop).如果关联表的数据量很大,则join关联的执行时间

mysql view 更新中的问题

  mysql的视图有三种类型:merge.temptable.undefined.如果没有ALGORITHM子句,默认算法是UNDEFINED(未定义的). 算法会影响MySQL处理视图的方式. 1,MERGE,会将引用视图的语句的文本与视图定义合并起来,使得视图定义的某一部分取代语句的对应部分. 2,TEMPTABLE,视图的结果将被置于临时表中,然后使用它执行语句. 3,UNDEFINED,MySQL将选择所要使用的算法.如果可能,它倾向于MERGE而不是TEMPTABLE,这是因为MER

java高并发系列 - 第32天:高并发中计数器的实现方式有哪些?

这是java高并发系列第32篇文章. java环境:jdk1.8. 本文主要内容 4种方式实现计数器功能,对比其性能 介绍LongAdder 介绍LongAccumulator 需求:一个jvm中实现一个计数器功能,需保证多线程情况下数据正确性. 我们来模拟50个线程,每个线程对计数器递增100万次,最终结果应该是5000万. 我们使用4种方式实现,看一下其性能,然后引出为什么需要使用LongAdder.LongAccumulator. 方式一:synchronized方式实现 package

优化系列 | DELETE子查询改写优化

0.导读 有个采用子查询的DELETE执行得非常慢,改写成SELECT后执行却很快,最后把这个子查询DELETE改写成JOIN优化过程 1.问题描述 朋友遇到一个怪事,一个用子查询的DELETE,执行效率非常低.把DELETE改成SELECT后执行起来却很快,百思不得其解. 下面就是这个用了子查询的DELETE了: [[email protected]]mydb > EXPLAIN delete from trade_info where id in ( select id from ( sel

MySQL Using temporary; Using filesort INNER JOIN优化

问题 通过「SHOW FULL PROCESSLIST」语句很容易就能查到问题SQL,如下: SELECT post.* FROM post INNER JOIN post_tag ON post.id = post_tag.post_id WHERE post.status = 1 AND post_tag.tag_id = 123 ORDER BY post.created DESC LIMIT 100 说明:因为post和tag是多对多的关系,所以存在一个关联表post_tag. 试着用E

MySql数据库优化的八种经典方式

1.选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快.因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽可能小. 例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很好的完成任务了.同样的,如果可以的话,我们应该使用MEDIUMINT而不是BIGIN来定义整型字段. 另外一个提高效率的方法

MySql、SqlServer、Oracle 三种数据库查询分页方式

SQL Server关于分页 SQL 的资料许多,有的使用存储过程,有的使用游标.本人不喜欢使用游标,我觉得它耗资.效率低:使用存储过程是个不错的选择,因为存储过程是颠末预编译的,执行效率高,也更灵活.先看看单条 SQL 语句的分页 SQL 吧.方法1:适用于 SQL Server 2000/2005SELECT TOP 页大小 * FROM table1 WHERE id NOT IN ( SELECT TOP 页大小*(页数-1) id FROM table1 ORDER BY id ) O