虚拟机Ubuntu16,caffe环境搭建

虚拟机下的Ubuntu16.04+caffe+onlycup

官网的step很重要,要跟着官网,的步骤来:http://caffe.berkeleyvision.org/installation.html

然后对照:http://blog.csdn.net/firethelife/article/details/51926754

======================【关于注意和报错】===================

-------------------------------------------------------------------------------------

caffe下make 的时候遇到的一些找不到ldhf5之类的错误,则要安装libhdf5,如下解决:

sudo apt-get install libhdf5-dev

-------------------------------------------------------------------------------------

【http://www.linuxidc.com/Linux/2016-07/132860.htm】

首先安装必要的库,有的依赖库我是已经安装过的,具体安装的先后关系已经忘了。如果出现有些依赖关系不满足的错误,可以再安装库:

$ sudo apt-get install build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev    # 必要的基本库

根据上面的链接下载OpenCV3.1.0版本,并进行解压,解压之后进入安装文件目录:

$ cd opencv-3.1.0
$ mkdir build          #创建build文件夹
$ cd opencv-3.1.0/build
$ cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..  

----------------------------------------------------------------------------------

OpenBLAS:

The default directory is /opt/OpenBLAS     /*这个是默认安装路径*/

$ git clone https://github.com/xianyi/OpenBLAS.git

【http://www.linuxdiyf.com/linux/15610.html】

则需要安装,安装的步骤如下:

(1)git clone https://github.com/xianyi/OpenBLAS.git

(2)cd OpenBLAS

(3)make FC=gfortran (如果没有安装gfortran,执行sudo apt-get install gfortran)

(4) make install (将OpenBLAS安装到/opt下)

装好后,对应 caffe下Makefile.config修改如下:

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := open
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
BLAS_INCLUDE := /opt/OpenBLAS/include
BLAS_LIB := /opt/OpenBLAS/lib

-----------------------------------------------------------------------------------

caffe,,,make 的时候会发生一些错误,查看caffe下Makefile.config,修改:

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial/

其中:/usr/include/hdf5/serial/是hdf5的位置。

---------------------------------------------------------------------------------------

【http://blog.csdn.net/lanxuecc/article/details/51997919】

runtest时会报一个错::build_release/tools/caffe: error while loading shared libraries: libopenblas.so.0: cannot open shared object file: No such file or directory,解决方法:在/usr/lib/下建立一个 软链接将 libopenblas.so.0指向/openbls安装目录/lib/ libopenblas.so.0

-----\

在/usr/lib/下建立一个 软链接将 libopenblas.so.0指向/openbls安装目录/lib/ libopenblas.so.0
ln -s /opt/OpenBLAS/lib/libopenblas.so.0 /usr/lib/libopenblas.so.0

------------------------------------------------------------------------------------

============= caffe下Makefile.config最终的样子如下==================

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).
CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you‘re using OpenCV 3
OPENCV_VERSION := 3

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_50,code=compute_50

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := open
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
BLAS_INCLUDE := /opt/OpenBLAS/include
BLAS_LIB := /opt/OpenBLAS/lib

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it‘s in root.
ANACONDA_HOME := $(HOME)/anaconda2
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
$(ANACONDA_HOME)/include/python2.7 \
$(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \

# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
#PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c ‘import numpy.core; print(numpy.core.__file__)‘))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial/

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that ‘make runtest‘ will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @

-----------------------------------------------------------------------------------------------

感想:在Windows和虚拟机Ubuntu16下都搭好了环境了,好想大声喊一句:鬼知道我这四天经历了什么。。。。幸好你没有放弃!!!

花了2天的时间明白:cuda是英伟达的显卡,而我的机子是【计算机右键-属性-适配器-(最后一项)显示适配器:AMD】AMD的,所以装了cuda进不去Ubuntu的图形界面,在这里开启了各种重装的坎坷路程。。。。整整话了两天啊。。。我的妈呀!!!幸好,坚持了下来!!:)加油。

时间: 2025-01-02 04:16:24

虚拟机Ubuntu16,caffe环境搭建的相关文章

从头来之【图解针对虚拟机iOS开发环境搭建】

1.下载Mac OSX10.9. 点击下载 2.下载VMware Workstation 10,点击下载,网页中包含序列号.安装VM. 3.VM10-MacOS补丁.用于创建苹果虚拟机. 安装VM就不上图了. 下面创建苹果虚拟机开始上图. 1.安装完成VM后,先安装[VM10-MacOS补丁].解压下载好的文件,打开[windows]文件夹中的[install]安装补丁.这样我们才能在图4中看到有[Apple mac osx(m)]选项. 然后打开并点击左上角[文件]弹出下列对话框,单机新建虚拟

【21天实战Caffe】学习笔记(一)Ubuntu16.04+Caffe环境搭建

安装前准备工作: sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler sudo apt-get install --no-install-recommends libboost-all-dev sudo apt-get install libatlas-base-dev sudo apt-get install th

VMware12使用三台虚拟机Ubuntu16.04系统搭建hadoop-2.7.1+hbase-1.2.4(完全分布式)

初衷 首先说明一下既然网上有那么多教程为什么要还要写这样一个安装教程呢?网上教程虽然多,但是有些教程比较老,许多教程忽略许多安装过程中的细节,比如添加用户的权限,文件权限,小编在安装过程遇到许多这样的问题所以想写一篇完整的教程,希望对初学hadoop的人有一个直观的了解,我们接触真集群的机会比较少,虚拟机是个不错的选择,可以基本完全模拟真实的情况,前提是你的电脑要配置相对较好不然跑起来都想死,废话不多说. 环境说明 本文使用VMware? Workstation 12 Pro虚拟机创建并安装三台

VMware 安装centOS6.4虚拟机以及基础环境搭建

一个空的虚拟机就完成了 但这个虚拟机现在还是一个空壳,我们需要导入准备好的系统文件 确定,后 跳过检测 设置主机名,并配置网卡 勾选开机启动网卡 选择时区 设置密码 写入到磁盘 选择桌面版,下一步 接下来等大概十分钟,重启进入系统 不用设置用户,下一步 往下走没什么说的了,最后整个系统算是完成了 接下来是基础环境的搭建 192.168.138.131是ip地址   Bcast是广播地址   Mask是子网掩码 1.IP地址 此时网络是可以使用的 上面 ip是192.168.138.131是属于1

Windows 8.1下Caffe环境搭建

一.环境准备 1.Windows 8.1系统 2.Visual Studio 2013 Ultimate Visual studio 2013 Ultimate下载地址: Visual Studio 2013 Ultimate update 5 免费获取地址: http://download.microsoft.com/download/9/3/E/93EA27FF-DB02-4822-8771-DCA0238957E9/vs2013.5_ult_chs.iso?type=ISO 二.Visua

虚拟机ubuntu14.04环境搭建记录

之前搭建过的虚拟机,没记录,这次换了新电脑顺便记录下来. 一.虚拟机搭建好之后,发现虚拟机ssh无法使用 解决方法:apt-get update  更新源地址 apt-get install openssh-server /etc/init.d/ssh start 三步,完成. 二.待续 原文地址:https://www.cnblogs.com/flamewen/p/8178434.html

caffe环境搭建笔记

首先安装以下库或软件 sudo apt-get install gitsudo apt-get install      libprotobuf-dev     libleveldb-dev    libsnappy-dev      libopencv-dev      libhdf5-serial-dev      protobuf-compilersudo apt-get install --no-install-recommends libboost-all-devsudo apt-ge

Ubuntu 16.04 + caffe环境搭建(CPU)

1.安装依赖 sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler sudo apt-get install --no-install-recommends libboost-all-dev sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-de

传智播客C/C++各种开发环境搭建视频工具文档免费教程

传智播客作为中国IT培训的领军品牌,一直把握技术趋势,给大家带来最新的技术分享!传智播客C/C++主流开发环境免费分享视频文档中,就有写一个helloworld程序的示范.火速前来下载吧 所谓"工欲善其事,必先利其器". 欲学C/C++,必先搭建好开发环境,欲成为C/C++高手,必先跑起来helloworld! C/C++ IDE仅仅是工具--剑,C/C++语言就是剑法.欲雄霸天下,必须精通各种剑,精通各路剑法.请大家认真关注http://c.itcast.cn最新技术视频. (有图有