本节讲解如何预测患者需要佩戴的隐形眼镜类型。
1、使用决策树预测隐形眼镜类型的一般流程
(1)收集数据:提供的文本文件(数据来源于UCI数据库)
(2)准备数据:解析tab键分隔的数据行
(3)分析数据:快速检查数据,确保正确地解析数据内容,使用createPlot()函数绘制最终的树形图
(4)训练算法:createTree()函数
(5)测试算法:编写测试函数验证决策树可以正确分类给定的数据实例
(6)使用算法:存储数的数据结构,以使下次使用时无需重新构造树
trees.py如下:
#!/usr/bin/python # -*- coding: utf-8 -*- from math import log #计算给定数据集的香农熵 def calcShannonEnt(dataSet): numEntries=len(dataSet) labelCounts={} for featVec in dataSet: currentLabel=featVec[-1] if currentLabel not in labelCounts.keys(): labelCounts[currentLabel]=0 labelCounts[currentLabel]+=1 shannonEnt=0.0 for key in labelCounts: prob=float(labelCounts[key])/numEntries shannonEnt -=prob*log(prob,2) return shannonEnt #按照给定特征划分数据集 def splitDataSet(dataSet,axis,value): retDataSet=[] for featVec in dataSet: if featVec[axis]==value: reducedFeatVec=featVec[:axis] reducedFeatVec.extend(featVec[axis+1:]) retDataSet.append(reducedFeatVec) return retDataSet #选择最好的数据集划分方式 def chooseBestFeatureToSplit(dataSet): numFeatures=len(dataSet[0])-1 baseEntropy=calcShannonEnt(dataSet) #计算整个数据集的原始香农熵 bestInfoGain=0.0;bestFeature=-1 for i in range(numFeatures): #循环遍历数据集中的所有特征 featList=[example[i] for example in dataSet] uniqueVals=set(featList) newEntropy=0.0 for value in uniqueVals: subDataSet=splitDataSet(dataSet,i,value) prob=len(subDataSet)/float(len(dataSet)) newEntropy+=prob*calcShannonEnt(subDataSet) infoGain=baseEntropy-newEntropy if(infoGain>bestInfoGain): bestInfoGain=infoGain bestFeature=i return bestFeature def majorityCnt(classList): classCount={} for vote in classList: if vote not in classCount.keys():classCount[vote]=0 classCount[vote]+=1 sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True) return sortedClassCount[0][0] #创建树的函数代码 def createTree(dataSet,labels): classList=[example[-1] for example in dataSet] if classList.count(classList[0])==len(classList): #类别完全相同规则停止继续划分 return classList[0] if len(dataSet[0])==1: return majorityCnt(classList) bestFeat=chooseBestFeatureToSplit(dataSet) bestFeatLabel=labels[bestFeat] myTree={bestFeatLabel:{}} del(labels[bestFeat]) #得到列表包含的所有属性 featValues=[example[bestFeat] for example in dataSet] uniqueVals=set(featValues) for value in uniqueVals: subLabels=labels[:] myTree[bestFeatLabel][value]=createTree(splitDataSet(dataSet,bestFeat,value),subLabels) return myTree #测试算法:使用决策树执行分类 def classify(inputTree,featLabels,testVec): firstStr=inputTree.keys()[0] secondDict=inputTree[firstStr] featIndex=featLabels.index(firstStr) for key in secondDict.keys(): if testVec[featIndex]==key: if type(secondDict[key]).__name__==‘dict‘: classLabel=classify(secondDict[key],featLabels,testVec) else:classLabel=secondDict[key] return classLabel #使用算法:决策树的存储 def storeTree(inputTree,filename): import pickle fw=open(filename,‘w‘) pickle.dump(inputTree,fw) fw.close() def grabTree(filename): import pickle fr=open(filename) return pickle.load(fr)
treePlotter.py如下:
#!/usr/bin/python # -*- coding: utf-8 -*- import matplotlib.pyplot as plt from numpy import * import operator #定义文本框和箭头格式 decisionNode=dict(boxstyle="sawtooth",fc="0.8") leafNode=dict(boxstyle="round4",fc="0.8") arrow_args=dict(arrowstyle="<-") #绘制箭头的注解 def plotNode(nodeTxt,centerPt,parentPt,nodeType): createPlot.ax1.annotate(nodeTxt,xy=parentPt,xycoords=‘axes fraction‘,xytext=centerPt,textcoords=‘axes fraction‘,va="center",ha="center",bbox=nodeType,arrowprops=arrow_args) def createPlot(): fig=plt.figure(1,facecolor=‘white‘) fig.clf() createPlot.ax1=plt.subplot(111,frameon=False) plotNode(U‘决策节点‘,(0.5,0.1),(0.1,0.5),decisionNode) plotNode(U‘叶节点‘,(0.8,0.1),(0.3,0.8),leafNode) plt.show() #获取叶节点的数目和树的层数 def getNumLeafs(myTree): numLeafs=0 firstStr=myTree.keys()[0] secondDict=myTree[firstStr] for key in secondDict.keys(): if type(secondDict[key]).__name__==‘dict‘: numLeafs += getNumLeafs(secondDict[key]) else: numLeafs +=1 return numLeafs def getTreeDepth(myTree): maxDepth=0 firstStr=myTree.keys()[0] secondDict=myTree[firstStr] for key in secondDict.keys(): if type(secondDict[key]).__name__==‘dict‘: thisDepth=1+getTreeDepth(secondDict[key]) else:thisDepth=1 if thisDepth>maxDepth:maxDepth=thisDepth return maxDepth def retrieveTree(i): listOfTrees=[{‘no surfacing‘:{0:‘no‘,1:{‘flippers‘:{0:‘no‘,1:‘yes‘}}}}, {‘no surfacing‘:{0:‘no‘,1:{‘flippers‘:{0:{‘head‘:{0:‘no‘,1:‘yes‘}},1:‘no‘}}}}] return listOfTrees[i] #在父节点间填充文本信息 def plotMidText(cntrPt,parentPt,txtString): xMid=(parentPt[0]-cntrPt[0])/2.0+cntrPt[0] yMid=(parentPt[1]-cntrPt[1])/2.0+cntrPt[1] createPlot.ax1.text(xMid,yMid,txtString) #计算宽和高 def plotTree(myTree,parentPt,nodeTxt): numLeafs=getNumLeafs(myTree) depth=getTreeDepth(myTree) firstStr=myTree.keys()[0] cntrPt=(plotTree.xOff+(1.0+float(numLeafs))/2.0/plotTree.totalW,plotTree.yOff) plotMidText(cntrPt,parentPt,nodeTxt) #计算父节点和子节点的中间位置 plotNode(firstStr,cntrPt,parentPt,decisionNode) secondDict=myTree[firstStr] plotTree.yOff=plotTree.yOff-1.0/plotTree.totalD for key in secondDict.keys(): if type(secondDict[key]).__name__==‘dict‘: plotTree(secondDict[key],cntrPt,str(key)) else: plotTree.xOff=plotTree.xOff+1.0/plotTree.totalW plotNode(secondDict[key],(plotTree.xOff,plotTree.yOff),cntrPt,leafNode) plotMidText((plotTree.xOff,plotTree.yOff),cntrPt,str(key)) plotTree.yOff=plotTree.yOff+1.0/plotTree.totalD def createPlot(inTree): fig=plt.figure(1,facecolor=‘white‘) fig.clf() axprops=dict(xticks=[],yticks=[]) createPlot.ax1=plt.subplot(111,frameon=False,**axprops) plotTree.totalW=float(getNumLeafs(inTree)) plotTree.totalD=float(getTreeDepth(inTree)) plotTree.xOff=-0.5/plotTree.totalW;plotTree.yOff=1.0; plotTree(inTree,(0.5,1.0),‘‘) plt.show()
lenses.txt如下:
运行如下:
1 >>> import trees 2 >>> import treePlotter 3 >>> fr=open(‘lenses.txt‘) 4 >>> lenses=[inst.strip().split(‘\t‘) for inst in fr.readlines()] 5 >>> lensesLabels=[‘age‘,‘prescript‘,‘astigmatic‘,‘tearRate‘] 6 >>> lensesTree=trees.createTree(lenses,lensesLabels) 7 >>> lensesTree 8 {‘tearRate‘: {‘reduced‘: ‘no lenses‘, ‘normal‘: {‘astigmatic‘: {‘yes‘: {‘prescript‘: {‘hyper‘: {‘age‘: {‘pre‘: ‘no lenses‘, ‘presbyopic‘: ‘no lenses‘, ‘young‘: ‘hard‘}}, ‘myope‘: ‘hard‘}}, ‘no‘: {‘age‘: {‘pre‘: ‘soft‘, ‘presbyopic‘: {‘prescript‘: {‘hyper‘: ‘soft‘, ‘myope‘: ‘no lenses‘}}, ‘young‘: ‘soft‘}}}}}} 9 >>> treePlotter.createPlot(lensesTree)
由图看出决策树非常好地匹配了实验数据,然而这些匹配选项可能太多。我们将这种问题称之为过度匹配(overfitting)。为了减少过度匹配问题,我们可以裁剪决策树,去掉一些不必要的叶子节点。如果叶子节点只能增加少许信息,则可以删除该节点,将它并入到其他叶子节点中。
时间: 2024-10-25 19:06:36