PHP 二叉查找树(二叉搜索树)的查找

如下图:在二叉查找树中,搜索节点19是否存在

代码实现:

测试结果:

原文地址:https://www.cnblogs.com/qiangqiangge/p/12283930.html

时间: 2024-10-10 10:31:36

PHP 二叉查找树(二叉搜索树)的查找的相关文章

二叉搜索树的查找

---------------------siwuxie095 二叉搜索树的查找 程序:二叉搜索树和顺序查找表的查找对比 FileOps.h: #ifndef FILEOPS_H #define FILEOPS_H #include <string> #include <iostream> #include <fstream> #include <vector> using namespace std; namespace FileOps { int fir

二叉搜索树的查找与删除

在二叉搜索树中查找一个数,如果存在,则从树中删除. struct Node { Node* left; Node* right; int data; }; void findAndDel(Node*& head, int k) { if (!head) return; Node* node = head; Node* vnode = new Node; vnode->left = vnode->right = head; Node* pnode = vnode; // find nod

(3) 二叉查找树(二叉搜索树)

一.什么是二叉查找树? 二叉查找树, 或者是一个空树, 或者是具有如下性质的二叉树: (1).若它的左子树不空,则其左子树上的所有结点的值均小于它根结点的值: (2).若它的右子树不空,则其右子树上的所有结点的值均大于它根结点的值: (3).它的左.右子树也分别为二叉查找树. 下图就是一颗二叉查找树 二叉查找树是具有特殊性质的二叉树, 其节点数据结构定义如下: package searchTree; /** * Created by xinfengyao on 16-12-28. */ publ

【数据结构】第9章 查找! (二叉搜索树BST AVL树 B-(+)树 字典树 HASH表)

难产的笔记...本来打算用1天 结果前前后后拖了5天 §9.1 静态查找表 9.1.1 顺序表的查找 各种扫 自己脑补吧 复杂度O(n) 9.1.2 有序表的查找 若表是单调的,则可以利用二分查找.复杂度O(logn) 9.1.3 静态树表的查找 见 http://blog.csdn.net/area_52/article/details/43795837 9.1.4 索引顺序表的查找 建立索引表查找 §9.2 动态查找表 动态查找表的特点是,表结构本身是在查找过程中动态生成的,即对于给定值ke

数据结构(六)查找---二叉搜索树(排序树)

前提 前面的查找我们都是静态查找,因为数据集是有序存放,查找的方法有多种,可以使用折半,插值,斐波那契等,但是因为有序,在插入和删除操作上的效率并不高. 这时我们就需要一种动态查找方法,既可以高效实现查找,又可以使得插入和删除效率不错,这时我们可以考虑二叉排序树 二叉排序树 一:定义 又称为二叉搜索树(查找树),是一棵树,可以为空,但是需要满足以下性质: 1.非空左子树的所有键值小于其根节点的键值 2.非空右子树的所有键值大于其根节点的键值 3.左右子树都是二叉搜索树 二:操作 查找 /* Bi

数据结构第三部分:树与树的表示、二叉树及其遍历、二叉搜索树、平衡二叉树、堆、哈夫曼树、集合及其运算

参考:浙大数据结构(陈越.何钦铭)课件 1.树与树的表示 什么是树? 客观世界中许多事物存在层次关系 人类社会家谱 社会组织结构 图书信息管理 分层次组织在管理上具有更高的效率! 数据管理的基本操作之一:查找(根据某个给定关键字K,从集合R 中找出关键字与K 相同的记录).一个自然的问题就是,如何实现有效率的查找? 静态查找:集合中记录是固定的,没有插入和删除操作,只有查找 动态查找:集合中记录是动态变化的,除查找,还可能发生插入和删除 静态查找——方法一:顺序查找(时间复杂度O(n)) int

数据结构(三):非线性逻辑结构-特殊的二叉树结构:堆、哈夫曼树、二叉搜索树、平衡二叉搜索树、红黑树、线索二叉树

在上一篇数据结构的博文<数据结构(三):非线性逻辑结构-二叉树>中已经对二叉树的概念.遍历等基本的概念和操作进行了介绍.本篇博文主要介绍几个特殊的二叉树,堆.哈夫曼树.二叉搜索树.平衡二叉搜索树.红黑树.线索二叉树,它们在解决实际问题中有着非常重要的应用.本文主要从概念和一些基本操作上进行分类和总结. 一.概念总揽 (1) 堆 堆(heap order)是一种特殊的表,如果将它看做是一颗完全二叉树的层次序列,那么它具有如下的性质:每个节点的值都不大于其孩子的值,或每个节点的值都不小于其孩子的值

数据结构 ---- 二叉搜索树

一直对于二叉搜索树(又叫二叉排序树,也叫二叉查找树),没有很好的理解,决定花点时间来学习and总结.. 二叉搜索树也是二叉树的一种.(就像堆也就二叉树的一种一样...) 只不过,二叉搜索树也是有其他要求:对于所有的子树,其根节点的值大于左子树上的所有结点的值,而小于右子树上所有结点的值的值.. 对于错误的理解:对于所有的结点,要大于其左结点,小于其右结点..(PS:这种理解是错误的,一定要注意..) 还有一点需要注意的是:我们的大于和小于都应该是严格的. ========== 下面主要针对,其建

数据结构学习笔记04树(二叉树、二叉搜索树、平衡二叉树)

一.树 树的基本术语 ①结点的度(Degree):结点的子树个数 ②树的度:树的所有结点中最大的度数 ③叶结点(Leaf):度为0的结点 ④父结点(Parent):有子树的结点是其子树的根结点的父结点 ⑤子结点(Child):若A结点是B结点的父结点,则称B结点是A结点的子结点:子结点也称孩子结点. ⑥兄弟结点(Sibling):具有同一父结点的各结点彼此是兄弟结点. ⑦路径和路径长度:从结点n1到nk的路径为一个结点序列n1 , n2 ,… , nk , ni是 ni+1的父结点.路径所包含边

数据结构与算法之二叉搜索树

与链表不同,树是一种非线性的数据结构.树中最常用的是二叉树,二叉树限制了子树的数量,也就是每个结点的子树至多2个,并且这两个子树是有顺序的.而二叉搜索树(二叉查找树,二叉排序树)是指根节点的关键字大于左子树的,而小于右子树,并且,左右子树也是一颗二叉搜索树.也就是说中序遍历一颗二叉搜索树,它的输出是从小到大排序好的. 除了普通的二叉搜索树之外,还有很多关于它的变形. 二叉平衡搜索树,即即是一颗二叉平衡树,也是一颗搜索树,平衡树即任意一个结点的左子树的高度与右子树的高度之差的绝对值不大于1. 红黑