Constant-on-time buck-boost regulator converts a positive input to a negative output

Buck regulators find wide application as step-down regulators for converting large positive input voltages into a smaller positive output voltages. Figure 1 shows a simplified buck regulator that operates in continuous-conduction mode—that is, the inductor current always remains positive. The output voltage, VOUT, is equal to D×VIN, where D is the duty-cycle ratio of the buck switch, Q1, and VIN is the input voltage. The duty cycle, D, is equal to TON/TS, where TON is the on-time of Q1 and TS is the switching-frequency period.

You can reconfigure a buck regulator into a buck-boost circuit to convert a positive voltage into a negative voltage (Figure 2). The basic component configurations of both circuits are similar, and the inductor and the rectifier diode are transposed. Because the main switch, Q1, remains in the same location for both configurations, you can use an IC buck regulator for either topology. Switching on Q1 applies input voltage VIN across power inductor L1, and current in the inductor ramps up while Q1remains on. When Q1 switches off, inductor current continues to flow through C1, the load resistance and D1, producing a negative output voltage. During Q1‘s next on-time interval, the output capacitor supplies current to the load.

Figure 3 shows a low-cost buck-boost converter based on the LM5010 buck-regulator IC that converts a 10 to 50V positive supply voltage into –12V. Although many applications use a fixed switching frequency and modulate the output pulse width, this design features a constant-on-time approach in which the IC‘s internal output transistor turns on for an interval that‘s inversely proportional to the difference between the circuit‘s input and output voltage.

Inside IC1, a regulation comparator monitors the output voltage from voltage divider R1 and R2 and a 2.5V internal reference, and, if the output voltage falls below the desired value, the comparator switches on IC1‘s output transistor for an interval that an on-timer determines:

Providing that current through L1 remains continuous, VOUT remains regulated. Because R3 and K are constants, switching frequency FS remains constant. This relationship holds true provided that the current through the inductor remains continuous. At lighter loading, the current in the inductor becomes discontinuous—that is, the inductor current drops to zero for a portion of the switching cycle. At the onset of discontinuous operation, the switching frequency begins to drop and thus brings VOUT back into regulation.

Operating a buck-boost regulator in fixed-frequency mode without an oscillator eliminates loop compensation and stabilization components and, as a bonus, offers fast transient response unlimited by feedback-network lag time. With the component values in Figure 3, the regulator operates at approximately 400 kHz, delivering 12V at approximately 0.5A for 10V input and approximately 1A of output current for 50V input. Resistor R4 ensures that the minimum amount of output-ripple voltage necessary for regulation—approximately 25 mV—is available.

Fixed-frequency operation without an oscillator offers a low-cost, easily implemented regulator with no loop-compensation or stability issues to worry about. The transient response is fast, because there are no bandwidth-limiting feedback components. The regulator operates at approximately 400 kHz. The output-current capability varies with the input voltage. When you apply 10V input voltage, the output-current capability is approximately 0.5A, and, at 50V input, the output current is approximately 1A.

时间: 2024-11-01 22:03:47

Constant-on-time buck-boost regulator converts a positive input to a negative output的相关文章

Tracking Boost Regulator TYPICAL 5V REGULATION WITH BOOST CONVERTER AND LDO

Cs5171: Tracking Boost Regulator Adding a current mirror circuit to a typical boost circuit allows the user to select the amount of boost voltage and ensure a constant difference between input and output voltage. This is useful for high side drive ap

Get buck-boost performance from a boost regulator

The SEPIC (single-ended, primary-inductance-converter) topology is generally a good choice for voltage regulators that must produce an on output voltage that falls in the middle of the input-voltage range, such as a 5V output from a 2.7 to 6V input,

Cascode MOSFET increases boost regulator's input- and output-voltage ranges

Targeting use in portable-system applications that require raising a battery's voltage to a higher level, IC boost regulators often include output transistors that can drive storage inductors. However, most boost regulators' absolute-maximum input-vo

Wide-range voltage regulator automatically selects operating mode

The circuit in Figure 1 delivers programming voltages to an EEPROM under the control of an external DAC (not shown). You can replace the DAC with a potentiometer to create a general-purpose power supply operating from 12V and able to deliver a variab

OpAmp Voltage Follower/Regulator

By using an emitter-follower or a Darlington pair, a voltage-follower op amp configuration can source higher currents than the op amp otherwise could. With high-voltage regulators, powering the IC through the drive resistor for the pass transistors c

MP1584电源IC和BUCK电路分析

MP1584美国芯源半导体http://www.monolithicpower.com/  生产的step-down converter 降压转换器.其核心是buck转换! 下面是对BUCK电路进行分析. buck电路也属于开关电源.通过在MOS管Q上加上开关信号PWM,控制开关管的导通与关断,是电感和电容充放电,这里采用的二极管是肖特基二极管,其特点是快速恢复.相对于普通的二极管,普通的二极管会因为开关频率高产生漏电发热大而被烧毁. 科普一下,在开关电源中,单管DC/DC转换器共有六种,即降压

Codeforces 602B Approximating a Constant Range(想法题)

B. Approximating a Constant Range When Xellos was doing a practice course in university, he once had to measure the intensity of an effect that slowly approached equilibrium. A good way to determine the equilibrium intensity would be choosing a suffi

codeforces 602B Approximating a Constant Range

B. Approximating a Constant Range When Xellos was doing a practice course in university, he once had to measure the intensity of an effect that slowly approached equilibrium. A good way to determine the equilibrium intensity would be choosing a suffi

Error (10028): Can't resolve multiple constant drivers for net "out2" at shiyan.v(14)解决办法

//Error(10028):Can't resolve multiple constant drivers for net “ ” at **.v //两个进程里都有同一个条件判断的话,会产生并行信号冲突的问题. //同一个信号不允许在多个进程中赋值,否则则为多驱动. //进程的并行性决定了多进程不同能对同一个对象进行赋值. 1 module test(c1,c2,out1,out2); 2 3 input c1,c2; 4 output out1,out2; 5 6 reg out1,out