AbstractMap学习记录

package java.util;
import java.util.Map.Entry;

/**
* This class provides a skeletal implementation of the <tt>Map</tt>
* interface, to minimize the effort required to implement this interface.
*什么叫最小化的努力去实现这个接口?
* <p>To implement an unmodifiable map, the programmer needs only to extend this
* class and provide an implementation for the <tt>entrySet</tt> method, which
* returns a set-view of the map‘s mappings.  Typically, the returned set
* will, in turn, be implemented atop <tt>AbstractSet</tt>.  This set should
* not support the <tt>add</tt> or <tt>remove</tt> methods, and its iterator
* should not support the <tt>remove</tt> method.
*
* <p>To implement a modifiable map, the programmer must additionally override
* this class‘s <tt>put</tt> method (which otherwise throws an
* <tt>UnsupportedOperationException</tt>), and the iterator returned by
* <tt>entrySet().iterator()</tt> must additionally implement its
* <tt>remove</tt> method.
*
* <p>The programmer should generally provide a void (no argument) and map
* constructor, as per the recommendation in the <tt>Map</tt> interface
* specification.
*
* <p>The documentation for each non-abstract method in this class describes its
* implementation in detail.  Each of these methods may be overridden if the
* map being implemented admits a more efficient implementation.
*
* <p>This class is a member of the
* <a href="{@docRoot}/../technotes/guides/collections/index.html">
* Java Collections Framework</a>.
*
* @param <K> the type of keys maintained by this map
* @param <V> the type of mapped values
*
* @author  Josh Bloch
* @author  Neal Gafter
* @version %I%, %G%
* @see Map
* @see Collection
* @since 1.2
*/

public abstract class AbstractMap<K,V> implements Map<K,V> {
    /**
     * Sole constructor.  (For invocation by subclass constructors, typically
     * implicit.)
     */
    protected AbstractMap() {
    }

// Query Operations

/**
     * {@inheritDoc}
     *
     * <p>This implementation returns <tt>entrySet().size()</tt>.
     */
    public int size() {

//为什么是entrySet()的size呢?
    return entrySet().size();
    }

/**
     * {@inheritDoc}
     *
     * <p>This implementation returns <tt>size() == 0</tt>.
     */
    public boolean isEmpty() {

//为什么isEmpty()是判断的size等于0
    return size() == 0;
    }

/**
     * {@inheritDoc}
     *
     * <p>This implementation iterates over <tt>entrySet()</tt> searching
     * for an entry with the specified value.  If such an entry is found,
     * <tt>true</tt> is returned.  If the iteration terminates without
     * finding such an entry, <tt>false</tt> is returned.  Note that this
     * implementation requires linear time in the size of the map.
     *
     * @throws ClassCastException   {@inheritDoc}
     * @throws NullPointerException {@inheritDoc}
     */
    public boolean containsValue(Object value) {

//entrySet()这个是个没有实现的方法
    Iterator<Entry<K,V>> i = entrySet().iterator();
    if (value==null) {
        while (i.hasNext()) {
        Entry<K,V> e = i.next();
        if (e.getValue()==null)
            return true;
        }
    } else {
        while (i.hasNext()) {
        Entry<K,V> e = i.next();
        if (value.equals(e.getValue()))
            return true;
        }
    }
    return false;
    }

/**
     * {@inheritDoc}
     *
     * <p>This implementation iterates over <tt>entrySet()</tt> searching
     * for an entry with the specified key.  If such an entry is found,
     * <tt>true</tt> is returned.  If the iteration terminates without
     * finding such an entry, <tt>false</tt> is returned.  Note that this
     * implementation requires linear time in the size of the map; many
     * implementations will override this method.
     *
     * @throws ClassCastException   {@inheritDoc}
     * @throws NullPointerException {@inheritDoc}
     */
    public boolean containsKey(Object key) {
    Iterator<Map.Entry<K,V>> i = entrySet().iterator();
    if (key==null) {
        while (i.hasNext()) {
        Entry<K,V> e = i.next();
        if (e.getKey()==null)
            return true;
        }
    } else {
        while (i.hasNext()) {
        Entry<K,V> e = i.next();
        if (key.equals(e.getKey()))
            return true;
        }
    }
    return false;
    }

/**
     * {@inheritDoc}
     *
     * <p>This implementation iterates over <tt>entrySet()</tt> searching
     * for an entry with the specified key.  If such an entry is found,
     * the entry‘s value is returned.  If the iteration terminates without
     * finding such an entry, <tt>null</tt> is returned.  Note that this
     * implementation requires linear time in the size of the map; many
     * implementations will override this method.
     *
     * @throws ClassCastException            {@inheritDoc}
     * @throws NullPointerException          {@inheritDoc}
     */
    public V get(Object key) {
    Iterator<Entry<K,V>> i = entrySet().iterator();
    if (key==null) {
        while (i.hasNext()) {
        Entry<K,V> e = i.next();
        if (e.getKey()==null)
            return e.getValue();
        }
    } else {
        while (i.hasNext()) {
        Entry<K,V> e = i.next();
        if (key.equals(e.getKey()))
            return e.getValue();
        }
    }
    return null;
    }

// Modification Operations

/**
     * {@inheritDoc}
     *
     * <p>This implementation always throws an
     * <tt>UnsupportedOperationException</tt>.
     *
     * @throws UnsupportedOperationException {@inheritDoc}
     * @throws ClassCastException            {@inheritDoc}
     * @throws NullPointerException          {@inheritDoc}
     * @throws IllegalArgumentException      {@inheritDoc}
     */
    public V put(K key, V value) {
    throw new UnsupportedOperationException();
    }

/**
     * {@inheritDoc}
     *
     * <p>This implementation iterates over <tt>entrySet()</tt> searching for an
     * entry with the specified key.  If such an entry is found, its value is
     * obtained with its <tt>getValue</tt> operation, the entry is removed
     * from the collection (and the backing map) with the iterator‘s
     * <tt>remove</tt> operation, and the saved value is returned.  If the
     * iteration terminates without finding such an entry, <tt>null</tt> is
     * returned.  Note that this implementation requires linear time in the
     * size of the map; many implementations will override this method.
     *
     * <p>Note that this implementation throws an
     * <tt>UnsupportedOperationException</tt> if the <tt>entrySet</tt>
     * iterator does not support the <tt>remove</tt> method and this map
     * contains a mapping for the specified key.
     *
     * @throws UnsupportedOperationException {@inheritDoc}
     * @throws ClassCastException            {@inheritDoc}
     * @throws NullPointerException          {@inheritDoc}
     */
    public V remove(Object key) {
    Iterator<Entry<K,V>> i = entrySet().iterator();
    Entry<K,V> correctEntry = null;
    if (key==null) {
        while (correctEntry==null && i.hasNext()) {
        Entry<K,V> e = i.next();
        if (e.getKey()==null)
            correctEntry = e;
        }
    } else {
        while (correctEntry==null && i.hasNext()) {
        Entry<K,V> e = i.next();
        if (key.equals(e.getKey()))
            correctEntry = e;
        }
    }

V oldValue = null;
    if (correctEntry !=null) {
        oldValue = correctEntry.getValue();
        i.remove();
    }
    return oldValue;
    }

// Bulk Operations

/**
     * {@inheritDoc}
     *
     * <p>This implementation iterates over the specified map‘s
     * <tt>entrySet()</tt> collection, and calls this map‘s <tt>put</tt>
     * operation once for each entry returned by the iteration.
     *
     * <p>Note that this implementation throws an
     * <tt>UnsupportedOperationException</tt> if this map does not support
     * the <tt>put</tt> operation and the specified map is nonempty.
     *
     * @throws UnsupportedOperationException {@inheritDoc}
     * @throws ClassCastException            {@inheritDoc}
     * @throws NullPointerException          {@inheritDoc}
     * @throws IllegalArgumentException      {@inheritDoc}
     */
    public void putAll(Map<? extends K, ? extends V> m) {
        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
            put(e.getKey(), e.getValue());
    }

/**
     * {@inheritDoc}
     *
     * <p>This implementation calls <tt>entrySet().clear()</tt>.
     *
     * <p>Note that this implementation throws an
     * <tt>UnsupportedOperationException</tt> if the <tt>entrySet</tt>
     * does not support the <tt>clear</tt> operation.
     *
     * @throws UnsupportedOperationException {@inheritDoc}
     */
    public void clear() {
    entrySet().clear();
    }

// Views

/**
     * Each of these fields are initialized to contain an instance of the
     * appropriate view the first time this view is requested.  The views are
     * stateless, so there‘s no reason to create more than one of each.
     */
    transient volatile Set<K>        keySet = null;
    transient volatile Collection<V> values = null;

/**
     * {@inheritDoc}
     *
     * <p>This implementation returns a set that subclasses {@link AbstractSet}.
     * The subclass‘s iterator method returns a "wrapper object" over this
     * map‘s <tt>entrySet()</tt> iterator.  The <tt>size</tt> method
     * delegates to this map‘s <tt>size</tt> method and the
     * <tt>contains</tt> method delegates to this map‘s
     * <tt>containsKey</tt> method.
     *
     * <p>The set is created the first time this method is called,
     * and returned in response to all subsequent calls.  No synchronization
     * is performed, so there is a slight chance that multiple calls to this
     * method will not all return the same set.
     */
    public Set<K> keySet() {
    if (keySet == null) {
        keySet = new AbstractSet<K>() {
        public Iterator<K> iterator() {
            return new Iterator<K>() {
            private Iterator<Entry<K,V>> i = entrySet().iterator();

public boolean hasNext() {
                return i.hasNext();
            }

public K next() {
                return i.next().getKey();
            }

public void remove() {
                i.remove();
            }
                    };
        }

public int size() {
            return AbstractMap.this.size();
        }

public boolean contains(Object k) {
            return AbstractMap.this.containsKey(k);
        }
        };
    }
    return keySet;
    }

/**
     * {@inheritDoc}
     *
     * <p>returns a This implementation collection that subclasses {@link
     * AbstractCollection}.  The subclass‘s iterator method returns a
     * "wrapper object" over this map‘s <tt>entrySet()</tt> iterator.
     * The <tt>size</tt> method delegates to this map‘s <tt>size</tt>
     * method and the <tt>contains</tt> method delegates to this map‘s
     * <tt>containsValue</tt> method.
     *
     * <p>The collection is created the first time this method is called, and
     * returned in response to all subsequent calls.  No synchronization is
     * performed, so there is a slight chance that multiple calls to this
     * method will not all return the same collection.
     */
    public Collection<V> values() {
    if (values == null) {
        values = new AbstractCollection<V>() {
        public Iterator<V> iterator() {
            return new Iterator<V>() {
            private Iterator<Entry<K,V>> i = entrySet().iterator();

public boolean hasNext() {
                return i.hasNext();
            }

public V next() {
                return i.next().getValue();
            }

public void remove() {
                i.remove();
            }
                    };
                }

public int size() {
            return AbstractMap.this.size();
        }

public boolean contains(Object v) {
            return AbstractMap.this.containsValue(v);
        }
        };
    }
    return values;
    }

public abstract Set<Entry<K,V>> entrySet();

// Comparison and hashing

/**
     * Compares the specified object with this map for equality.  Returns
     * <tt>true</tt> if the given object is also a map and the two maps
     * represent the same mappings.  More formally, two maps <tt>m1</tt> and
     * <tt>m2</tt> represent the same mappings if
     * <tt>m1.entrySet().equals(m2.entrySet())</tt>.  This ensures that the
     * <tt>equals</tt> method works properly across different implementations
     * of the <tt>Map</tt> interface.
     *
     * <p>This implementation first checks if the specified object is this map;
     * if so it returns <tt>true</tt>.  Then, it checks if the specified
     * object is a map whose size is identical to the size of this map; if
     * not, it returns <tt>false</tt>.  If so, it iterates over this map‘s
     * <tt>entrySet</tt> collection, and checks that the specified map
     * contains each mapping that this map contains.  If the specified map
     * fails to contain such a mapping, <tt>false</tt> is returned.  If the
     * iteration completes, <tt>true</tt> is returned.
     *
     * @param o object to be compared for equality with this map
     * @return <tt>true</tt> if the specified object is equal to this map
     */
    public boolean equals(Object o) {
    if (o == this)
        return true;

if (!(o instanceof Map))
        return false;
    Map<K,V> m = (Map<K,V>) o;
    if (m.size() != size())
        return false;

try {
            Iterator<Entry<K,V>> i = entrySet().iterator();
            while (i.hasNext()) {
                Entry<K,V> e = i.next();
        K key = e.getKey();
                V value = e.getValue();
                if (value == null) {
                    if (!(m.get(key)==null && m.containsKey(key)))
                        return false;
                } else {
                    if (!value.equals(m.get(key)))
                        return false;
                }
            }
        } catch (ClassCastException unused) {
            return false;
        } catch (NullPointerException unused) {
            return false;
        }

return true;
    }

/**
     * Returns the hash code value for this map.  The hash code of a map is
     * defined to be the sum of the hash codes of each entry in the map‘s
     * <tt>entrySet()</tt> view.  This ensures that <tt>m1.equals(m2)</tt>
     * implies that <tt>m1.hashCode()==m2.hashCode()</tt> for any two maps
     * <tt>m1</tt> and <tt>m2</tt>, as required by the general contract of
     * {@link Object#hashCode}.
     *
     * <p>This implementation iterates over <tt>entrySet()</tt>, calling
     * {@link Map.Entry#hashCode hashCode()} on each element (entry) in the
     * set, and adding up the results.
     *
     * @return the hash code value for this map
     * @see Map.Entry#hashCode()
     * @see Object#equals(Object)
     * @see Set#equals(Object)
     */
    public int hashCode() {
    int h = 0;
    Iterator<Entry<K,V>> i = entrySet().iterator();
    while (i.hasNext())
        h += i.next().hashCode();
    return h;
    }

/**
     * Returns a string representation of this map.  The string representation
     * consists of a list of key-value mappings in the order returned by the
     * map‘s <tt>entrySet</tt> view‘s iterator, enclosed in braces
     * (<tt>"{}"</tt>).  Adjacent mappings are separated by the characters
     * <tt>", "</tt> (comma and space).  Each key-value mapping is rendered as
     * the key followed by an equals sign (<tt>"="</tt>) followed by the
     * associated value.  Keys and values are converted to strings as by
     * {@link String#valueOf(Object)}.
     *
     * @return a string representation of this map
     */
    public String toString() {
    Iterator<Entry<K,V>> i = entrySet().iterator();
    if (! i.hasNext())
        return "{}";

StringBuilder sb = new StringBuilder();
    sb.append(‘{‘);
    for (;;) {
        Entry<K,V> e = i.next();
        K key = e.getKey();
        V value = e.getValue();
        sb.append(key   == this ? "(this Map)" : key);
        sb.append(‘=‘);
        sb.append(value == this ? "(this Map)" : value);
        if (! i.hasNext())
        return sb.append(‘}‘).toString();
        sb.append(", ");
    }
    }

/**
     * Returns a shallow copy of this <tt>AbstractMap</tt> instance: the keys
     * and values themselves are not cloned.
     *
     * @return a shallow copy of this map
     */
    protected Object clone() throws CloneNotSupportedException {
        AbstractMap<K,V> result = (AbstractMap<K,V>)super.clone();
        result.keySet = null;
        result.values = null;
        return result;
    }

/**
     * Utility method for SimpleEntry and SimpleImmutableEntry.
     * Test for equality, checking for nulls.
     */
    private static boolean eq(Object o1, Object o2) {
        return o1 == null ? o2 == null : o1.equals(o2);
    }

// Implementation Note: SimpleEntry and SimpleImmutableEntry
    // are distinct unrelated classes, even though they share
    // some code. Since you can‘t add or subtract final-ness
    // of a field in a subclass, they can‘t share representations,
    // and the amount of duplicated code is too small to warrant
    // exposing a common abstract class.

/**
     * An Entry maintaining a key and a value.  The value may be
     * changed using the <tt>setValue</tt> method.  This class
     * facilitates the process of building custom map
     * implementations. For example, it may be convenient to return
     * arrays of <tt>SimpleEntry</tt> instances in method
     * <tt>Map.entrySet().toArray</tt>.
     *
     * @since 1.6
     */
    public static class SimpleEntry<K,V>
    implements Entry<K,V>, java.io.Serializable
    {
    private static final long serialVersionUID = -8499721149061103585L;

private final K key;
    private V value;

/**
         * Creates an entry representing a mapping from the specified
         * key to the specified value.
         *
         * @param key the key represented by this entry
         * @param value the value represented by this entry
         */
    public SimpleEntry(K key, V value) {
        this.key   = key;
            this.value = value;
    }

/**
         * Creates an entry representing the same mapping as the
         * specified entry.
         *
         * @param entry the entry to copy
         */
    public SimpleEntry(Entry<? extends K, ? extends V> entry) {
        this.key   = entry.getKey();
            this.value = entry.getValue();
    }

/**
     * Returns the key corresponding to this entry.
     *
     * @return the key corresponding to this entry
     */
    public K getKey() {
        return key;
    }

/**
     * Returns the value corresponding to this entry.
     *
     * @return the value corresponding to this entry
     */
    public V getValue() {
        return value;
    }

/**
     * Replaces the value corresponding to this entry with the specified
     * value.
     *
     * @param value new value to be stored in this entry
     * @return the old value corresponding to the entry
         */
    public V setValue(V value) {
        V oldValue = this.value;
        this.value = value;
        return oldValue;
    }

/**
     * Compares the specified object with this entry for equality.
     * Returns {@code true} if the given object is also a map entry and
     * the two entries represent the same mapping.    More formally, two
     * entries {@code e1} and {@code e2} represent the same mapping
     * if<pre>
     *   (e1.getKey()==null ?
     *    e2.getKey()==null :
     *    e1.getKey().equals(e2.getKey()))
     *   &amp;&amp;
     *   (e1.getValue()==null ?
     *    e2.getValue()==null :
     *    e1.getValue().equals(e2.getValue()))</pre>
     * This ensures that the {@code equals} method works properly across
     * different implementations of the {@code Map.Entry} interface.
     *
     * @param o object to be compared for equality with this map entry
     * @return {@code true} if the specified object is equal to this map
     *       entry
     * @see    #hashCode
     */
    public boolean equals(Object o) {
        if (!(o instanceof Map.Entry))
        return false;
        Map.Entry e = (Map.Entry)o;
        return eq(key, e.getKey()) && eq(value, e.getValue());
    }

/**
     * Returns the hash code value for this map entry.  The hash code
     * of a map entry {@code e} is defined to be: <pre>
     *   (e.getKey()==null   ? 0 : e.getKey().hashCode()) ^
     *   (e.getValue()==null ? 0 : e.getValue().hashCode())</pre>
     * This ensures that {@code e1.equals(e2)} implies that
     * {@code e1.hashCode()==e2.hashCode()} for any two Entries
     * {@code e1} and {@code e2}, as required by the general
     * contract of {@link Object#hashCode}.
     *
     * @return the hash code value for this map entry
     * @see    #equals
     */
    public int hashCode() {
        return (key   == null ? 0 :   key.hashCode()) ^
           (value == null ? 0 : value.hashCode());
    }

/**
         * Returns a String representation of this map entry.  This
         * implementation returns the string representation of this
         * entry‘s key followed by the equals character ("<tt>=</tt>")
         * followed by the string representation of this entry‘s value.
         *
         * @return a String representation of this map entry
         */
    public String toString() {
        return key + "=" + value;
    }

}

/**
     * An Entry maintaining an immutable key and value.  This class
     * does not support method <tt>setValue</tt>.  This class may be
     * convenient in methods that return thread-safe snapshots of
     * key-value mappings.
     *
     * @since 1.6
     */
    public static class SimpleImmutableEntry<K,V>
    implements Entry<K,V>, java.io.Serializable
    {
    private static final long serialVersionUID = 7138329143949025153L;

private final K key;
    private final V value;

/**
         * Creates an entry representing a mapping from the specified
         * key to the specified value.
         *
         * @param key the key represented by this entry
         * @param value the value represented by this entry
         */
    public SimpleImmutableEntry(K key, V value) {
        this.key   = key;
            this.value = value;
    }

/**
         * Creates an entry representing the same mapping as the
         * specified entry.
         *
         * @param entry the entry to copy
         */
    public SimpleImmutableEntry(Entry<? extends K, ? extends V> entry) {
        this.key   = entry.getKey();
            this.value = entry.getValue();
    }

/**
     * Returns the key corresponding to this entry.
     *
     * @return the key corresponding to this entry
     */
    public K getKey() {
        return key;
    }

/**
     * Returns the value corresponding to this entry.
     *
     * @return the value corresponding to this entry
     */
    public V getValue() {
        return value;
    }

/**
     * Replaces the value corresponding to this entry with the specified
     * value (optional operation).  This implementation simply throws
         * <tt>UnsupportedOperationException</tt>, as this class implements
         * an <i>immutable</i> map entry.
     *
     * @param value new value to be stored in this entry
     * @return (Does not return)
     * @throws UnsupportedOperationException always
         */
    public V setValue(V value) {
            throw new UnsupportedOperationException();
        }

/**
     * Compares the specified object with this entry for equality.
     * Returns {@code true} if the given object is also a map entry and
     * the two entries represent the same mapping.    More formally, two
     * entries {@code e1} and {@code e2} represent the same mapping
     * if<pre>
     *   (e1.getKey()==null ?
     *    e2.getKey()==null :
     *    e1.getKey().equals(e2.getKey()))
     *   &amp;&amp;
     *   (e1.getValue()==null ?
     *    e2.getValue()==null :
     *    e1.getValue().equals(e2.getValue()))</pre>
     * This ensures that the {@code equals} method works properly across
     * different implementations of the {@code Map.Entry} interface.
     *
     * @param o object to be compared for equality with this map entry
     * @return {@code true} if the specified object is equal to this map
     *       entry
     * @see    #hashCode
     */
    public boolean equals(Object o) {
        if (!(o instanceof Map.Entry))
        return false;
        Map.Entry e = (Map.Entry)o;
        return eq(key, e.getKey()) && eq(value, e.getValue());
    }

/**
     * Returns the hash code value for this map entry.  The hash code
     * of a map entry {@code e} is defined to be: <pre>
     *   (e.getKey()==null   ? 0 : e.getKey().hashCode()) ^
     *   (e.getValue()==null ? 0 : e.getValue().hashCode())</pre>
     * This ensures that {@code e1.equals(e2)} implies that
     * {@code e1.hashCode()==e2.hashCode()} for any two Entries
     * {@code e1} and {@code e2}, as required by the general
     * contract of {@link Object#hashCode}.
     *
     * @return the hash code value for this map entry
     * @see    #equals
     */
    public int hashCode() {
        return (key   == null ? 0 :   key.hashCode()) ^
           (value == null ? 0 : value.hashCode());
    }

/**
         * Returns a String representation of this map entry.  This
         * implementation returns the string representation of this
         * entry‘s key followed by the equals character ("<tt>=</tt>")
         * followed by the string representation of this entry‘s value.
         *
         * @return a String representation of this map entry
         */
    public String toString() {
        return key + "=" + value;
    }

}

}

时间: 2024-07-30 06:12:59

AbstractMap学习记录的相关文章

Python学习记录-2016-12-17

今日学习记录 模块: import os#导入os模块 import sys#导入sys模块 os.system("df -h")#执行df -h命令 cmd_res = os.popen("df -h").read()#将命令的返回结果赋值给cmd_res,如果不加入.read()会显示命令的返回加过在内存的位置 print(sys.path)#显示系统变量路径,一般个人模块位于site-packages下,系统模块位于lib下 print(sys.argu[2]

Objc基础学习记录5

NSMutableString类继承的NSString类. NSMutableString是动态的字符串. 1.appendingString 方式: 向字符串尾部添加一个字符串. 2.appendingFormat:可以添加多个类型的字符串. int,chat float,double等 3.stringWithString 创建字符串, 4.rangeOfString 返回str1在另一个字符串中的位置. 5.NSMakeRange(0,3) 字符串0位到3位. 6.deleteCharac

Windows API 编程学习记录&lt;二&gt;

恩,开始写Windows API编程第二节吧. 上次介绍了几个关于Windows API编程最基本的概念,但是如果只是看这些概念,估计还是对Windows API不是很了解.这节我们就使用Windows API 让大家来了解下Windows API的用法. 第一个介绍的Windows API 当然是最经典的MessageBox,这个API 的作用就是在电脑上显示一个对话框,我们先来看看这个API的定义吧: int WINAPI MessageBox(HWND hWnd, LPCTSTR lpTe

Windows API 编程学习记录&lt;三&gt;

恩,开始写API编程的第三节,其实马上要考试了,但是不把这节写完,心里总感觉不舒服啊.写完赶紧去复习啊       在前两节中,我们介绍了Windows API 编程的一些基本概念和一个最基本API函数 MessageBox的使用,在这节中,我们就来正式编写一个Windows的窗口程序. 在具体编写代码之前,我们必须先要了解一下API 编写窗口程序具体的三个基本步骤:             1. 注册窗口类:             2.创建窗口:             3.显示窗口: 恩,

Python学习记录day6

Python学习记录day6 学习 python Python学习记录day6 1.反射 2.常用模块 2.1 sys 2.2 os 2.3 hashlib 2.3 re 1.反射 反射:利用字符串的形式去对象(默认)中操作(寻找)成员 cat commons.py #!/usr/bin/env python#_*_coding:utf-8_*_''' * Created on 2016/12/3 21:54. * @author: Chinge_Yang.''' def login(): pr

Python学习记录-2016-11-29

今日学习记录: 心灵鸡汤: 要有合适自己的目标,一个目标一个目标实现,切忌好高骛远: 最好的投资就是投资自己: 实现梦想 学习,学习,再学习: Talk is cheap. 从本身而言,余三十而立之年,从事测试行业7七年有余,一年半华为外包路由器,两年无线wifi测试,一年半网管软件测试,一年自动化测试经理,推行公司自动化测试进程,从开始的TCL,到现在的python,工欲善其事必先利其器,所以自己来学习,总体我认为我的目标是一直前进的,不断变化的,但是方向并没有大的错误,有些累,所以近期有些懈

程序的机械级表示学习记录

程序的机械级表示学习记录 X86的三代寻址方式 DOS时代的平坦模式,不区分用户空间和内核空间,很不安全. 8086的分段模式. IA32的带保护模式的平坦模式. 对于机械级编程的两种重要抽象 ISA:机械级程序的格式和行为,定义为指令集体系结构,它定义了处理器状态.指令的格式,以及每条指令对状态的影响. 虚拟地址:机器级程序使用的存储器地址,提供的存储器模型看上去是一个非常大的数组.存储器系统的实际实现是将多个硬件存储器和操作系统软件组合起来的. 在GCC中获得汇编代码与反汇编 获得汇编代码:

python 系统地学习记录

由头: python值得一学. 尝试一下写学习记录,看看效果. 1.记录一些不熟悉或者重要的知识点. 2.记录一些遇到的问题,标签 Question. 书:python基础教程(第2版) Chapter 1:基础知识 本章的内容熟悉即可. 比较重要的是字符串,单双引号转义,str,repr... Time 1.5 h  2015.8.31 23:09 版权声明:本文为博主原创文章,未经博主允许不得转载.

Java 静态内部类与非静态内部类 学习记录.

目的 为什么会有这篇文章呢,是因为我在学习各种框架的时候发现很多框架都用到了这些内部类的小技巧,虽然我平时写代码的时候基本不用,但是看别人代码的话至少要了解基本知识吧,另外到底内部类应该应用在哪些场合,我并不是很清楚,留下一些值得思考的问题作为记录,说不定以后能自己来填.于是就会有这篇文章啦. 常规使用方法我也不想介绍,网上一大把,我就说说比较容易错的,值得注意的地方. 注意 这篇文章只是分享一下我对内部类的一些研究与困惑吧,说不定对大家有帮助,说不定能引导大家一起思考学习.Java语法知识其实