Wavio Sequence
Input: Standard Input
Output: Standard Output
Time Limit: 2 Seconds
Wavio is a sequence of integers. It has some interesting properties.
· Wavio is of odd length i.e. L = 2*n + 1.
· The first (n+1) integers of Wavio sequence makes a strictly increasing sequence.
· The last (n+1) integers of Wavio sequence makes a strictly decreasing sequence.
· No two adjacent integers are same in a Wavio sequence.
For example 1, 2, 3, 4, 5, 4, 3, 2, 0 is an Wavio sequence of length9. But
1, 2, 3, 4, 5, 4, 3, 2, 2 is not a valid wavio sequence. In this problem, you will be given a sequence of integers. You have to find out the length of the longest Wavio sequence which is a subsequence of the given sequence. Consider, the given
sequence as :
1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1.
Here the longest Wavio sequence is : 1 2 3 4 5 4 3 2 1. So, the output will be9.
Input
The input file contains less than 75 test cases. The description of each test case is given below: Input is terminated by end of file.
Each set starts with a postive integer, N(1<=N<=10000). In next few lines there will beN integers.
Output
For each set of input print the length of longest wavio sequence in a line.
Sample Input Output for Sample Input
10 1 2 3 4 5 4 3 2 1 10 19 1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1 5 1 2 3 4 5 |
9 9 1
|
题意:给定一串数字,求一个子串满足一下要求:子串的长度是L=2*n+1,前n+1个数字是严格的递增序列,后n+1个数字是严格的递减序列,例如123454321就是满足要求的一个子串,输出满足要求的最长的L,
思路:正着走一遍LIS,再倒着走一遍LIS,分别用 pre 数组和 suf 数组保存。pre[i]表示表示已a[i]为位数的最长递增子序列的长度,suf 亦然。然后用 ans = max(ans, min(pre[i], suf[n-1-i])*2-1) 遍历即可。
<span style="font-size:24px;">#include <cstdio> #include <iostream> #include <cstring> #include <cmath> #include <string> #include <algorithm> #include <queue> #include <stack> using namespace std; const int INF = 1<<29; const double PI = acos(-1.0); const double e = 2.718281828459; const double eps = 1e-8; const int MAXN = 10010; int t[MAXN]; int n; void LIS(int *dp, int *a) { fill(t, t+n, INF); for(int i = 0; i < n; i++) { *lower_bound(t, t+n, a[i]) = a[i]; dp[i] = lower_bound(t, t+n, a[i])-t+1; } } int main() { //freopen("in.txt", "r", stdin); //freopen("out.txt", "w", stdout); int a[MAXN], b[MAXN]; int pre[MAXN], suf[MAXN]; while(cin>>n) { for(int i = 0; i < n; i++) { scanf("%d", &a[i]); b[n-1-i] = a[i]; } LIS(pre, a); LIS(suf, b); int ans = 0; for(int i = 0; i < n; i++) { ans = max(ans, min(pre[i], suf[n-1-i])*2-1); } cout<<ans<<endl; } return 0; }</span>