写这篇文章的原因是我在问答平台看到的一个问题:
C++内层循环中定义变量和在外面定义比影响大吗?
问题来自:http://ask.csdn.net/questions/176270
例如:
for(int i=0;i<999;i++) {
for(int j=0;j<999;j++);
}
内层循环每次都定义j会造成多大的消耗呢?
此处我给出的回答是:
这个需要看你具体用什么编译器。不过主流编译器(如vs和gcc)这一块优化都比较好,不会反复分配变量。
看到答案和评论,好像有很多人对这个感兴趣,所以我打算给大家实测分享一下,于是写了如下代码进行测试:
#include <cstdio>
using namespace std;
void Test1()
{
for (int i = 0; i < 2; i++)
{
for (int j = 0; j < 3; j++)
{
printf("%d,%d\n", int(i), int(j));
}
}
}
void Test2()
{
int i, j;
for (i = 0; i < 2; i++)
{
for (j = 0; j < 3; j++)
{
printf("%d,%d\n", int(i), int(j));
}
}
}
int main()
{
Test1();
Test2();
return 0;
}
OK,程序非常简单,Test1
和Test2
是两个循环,干相同的事情,就是在双重循环里打印一下 i
和 j
的值,差别只在于一个在循环外定义变量 j
,另一个在循环内定义变量 j
。
此处我使用g++
进行编译,优化等级是O0
(这是GCC
默认的优化等级,也是最低的优化等级)的:
g++ -O0 -g test.cpp
编译后,我将生成的Test1函数和Test2函数反汇编出来,得出的结果是这样的:
Test1
函数反汇编如下:
(gdb) disas /m Test1
Dump of assembler code for function Test1():
5 {
0x0804841d <+0>: push %ebp
0x0804841e <+1>: mov %esp,%ebp
0x08048420 <+3>: sub $0x28,%esp
6 for (int i = 0; i < 2; i++)
0x08048423 <+6>: movl $0x0,-0x10(%ebp)
0x0804842a <+13>: jmp 0x804845d <Test1()+64>
0x08048459 <+60>: addl $0x1,-0x10(%ebp)
0x0804845d <+64>: cmpl $0x1,-0x10(%ebp)
0x08048461 <+68>: jle 0x804842c <Test1()+15>
7 {
8 for (int j = 0; j < 3; j++)
0x0804842c <+15>: movl $0x0,-0xc(%ebp)
0x08048433 <+22>: jmp 0x8048453 <Test1()+54>
0x0804844f <+50>: addl $0x1,-0xc(%ebp)
0x08048453 <+54>: cmpl $0x2,-0xc(%ebp)
0x08048457 <+58>: jle 0x8048435 <Test1()+24>
9 {
10 printf("%d,%d\n", int(i), int(j));
0x08048435 <+24>: mov -0xc(%ebp),%eax
0x08048438 <+27>: mov %eax,0x8(%esp)
0x0804843c <+31>: mov -0x10(%ebp),%eax
0x0804843f <+34>: mov %eax,0x4(%esp)
0x08048443 <+38>: movl $0x8048560,(%esp)
0x0804844a <+45>: call 0x80482f0 <printf@plt>
11 }
12 }
13
14 }
0x08048463 <+70>: leave
0x08048464 <+71>: ret
Test2
函数反汇编如下:
(gdb) disas /m Test2
Dump of assembler code for function Test2():
17 {
0x08048465 <+0>: push %ebp
0x08048466 <+1>: mov %esp,%ebp
0x08048468 <+3>: sub $0x28,%esp
18 int i, j;
19
20 for (i = 0; i < 2; i++)
0x0804846b <+6>: movl $0x0,-0x10(%ebp)
0x08048472 <+13>: jmp 0x80484a5 <Test2()+64>
0x080484a1 <+60>: addl $0x1,-0x10(%ebp)
0x080484a5 <+64>: cmpl $0x1,-0x10(%ebp)
0x080484a9 <+68>: jle 0x8048474 <Test2()+15>
21 {
22 for (j = 0; j < 3; j++)
0x08048474 <+15>: movl $0x0,-0xc(%ebp)
0x0804847b <+22>: jmp 0x804849b <Test2()+54>
0x08048497 <+50>: addl $0x1,-0xc(%ebp)
0x0804849b <+54>: cmpl $0x2,-0xc(%ebp)
0x0804849f <+58>: jle 0x804847d <Test2()+24>
23 {
24 printf("%d,%d\n", int(i), int(j));
0x0804847d <+24>: mov -0xc(%ebp),%eax
0x08048480 <+27>: mov %eax,0x8(%esp)
0x08048484 <+31>: mov -0x10(%ebp),%eax
0x08048487 <+34>: mov %eax,0x4(%esp)
0x0804848b <+38>: movl $0x8048560,(%esp)
0x08048492 <+45>: call 0x80482f0 <printf@plt>
25 }
26 }
27 }
0x080484ab <+70>: leave
0x080484ac <+71>: ret
End of assembler dump.
在Test1
的反汇编中,我们在内部for (int j = 0; j < 3; j++)
下面,没有看到分配变量 j
的汇编指令,如果再只打印Test1
和Test2
的汇编代码,经过对比,你们发现这两个函数产生的汇编指令是完全一样的:
(gdb) disas Test1
Dump of assembler code for function Test1():
0x0804841d <+0>: push %ebp
0x0804841e <+1>: mov %esp,%ebp
0x08048420 <+3>: sub $0x28,%esp
0x08048423 <+6>: movl $0x0,-0x10(%ebp)
0x0804842a <+13>: jmp 0x804845d <Test1()+64>
0x0804842c <+15>: movl $0x0,-0xc(%ebp)
0x08048433 <+22>: jmp 0x8048453 <Test1()+54>
0x08048435 <+24>: mov -0xc(%ebp),%eax
0x08048438 <+27>: mov %eax,0x8(%esp)
0x0804843c <+31>: mov -0x10(%ebp),%eax
0x0804843f <+34>: mov %eax,0x4(%esp)
0x08048443 <+38>: movl $0x8048560,(%esp)
0x0804844a <+45>: call 0x80482f0 <printf@plt>
0x0804844f <+50>: addl $0x1,-0xc(%ebp)
0x08048453 <+54>: cmpl $0x2,-0xc(%ebp)
0x08048457 <+58>: jle 0x8048435 <Test1()+24>
0x08048459 <+60>: addl $0x1,-0x10(%ebp)
0x0804845d <+64>: cmpl $0x1,-0x10(%ebp)
0x08048461 <+68>: jle 0x804842c <Test1()+15>
0x08048463 <+70>: leave
0x08048464 <+71>: ret
End of assembler dump.
(gdb) disas Test2
Dump of assembler code for function Test2():
0x08048465 <+0>: push %ebp
0x08048466 <+1>: mov %esp,%ebp
0x08048468 <+3>: sub $0x28,%esp
0x0804846b <+6>: movl $0x0,-0x10(%ebp)
0x08048472 <+13>: jmp 0x80484a5 <Test2()+64>
0x08048474 <+15>: movl $0x0,-0xc(%ebp)
0x0804847b <+22>: jmp 0x804849b <Test2()+54>
0x0804847d <+24>: mov -0xc(%ebp),%eax
0x08048480 <+27>: mov %eax,0x8(%esp)
0x08048484 <+31>: mov -0x10(%ebp),%eax
0x08048487 <+34>: mov %eax,0x4(%esp)
0x0804848b <+38>: movl $0x8048560,(%esp)
0x08048492 <+45>: call 0x80482f0 <printf@plt>
0x08048497 <+50>: addl $0x1,-0xc(%ebp)
0x0804849b <+54>: cmpl $0x2,-0xc(%ebp)
0x0804849f <+58>: jle 0x804847d <Test2()+24>
0x080484a1 <+60>: addl $0x1,-0x10(%ebp)
0x080484a5 <+64>: cmpl $0x1,-0x10(%ebp)
0x080484a9 <+68>: jle 0x8048474 <Test2()+15>
0x080484ab <+70>: leave
0x080484ac <+71>: ret
End of assembler dump.
当然,这里只测试了g++
的编译效果。vs
下的效果大家可以自己测试。目前可以肯定,如果你使用gcc
的编译器,你完全可以不用纠结在循环外定义变量还是循环内定义变量,因为效果完全是一样的,不过为了代码好看,还是写到循环内吧。
上面已经探究了使用基本数据类型int
作为循环变量的情况,这里需要进阶一下,探讨一下如果我使用的不是int
,而是一个复杂的对象,那循环的效果又是如何呢?
为了方便看到变量的分配,我在类的构造函数里加了打印语句,可以让我们方便地看到类的对象被创建的情况:
#include <cstdio>
using namespace std;
class MyInt
{
public:
MyInt(int i):
m_iValue(i)
{
printf("Constructed: MyInt(%d)\n", i);
}
MyInt()
{
printf("Constructed: MyInt()\n");
}
MyInt &operator++(int i)
{
m_iValue ++;
return *this;
}
bool const operator <(const MyInt& another)
{
return m_iValue < another.m_iValue;
}
operator int()
{
return m_iValue;
}
MyInt &operator =(int i)
{
m_iValue = i;
return *this;
}
private:
int m_iValue;
};
void Test1()
{
for (MyInt i = MyInt(0); i < MyInt(2); i++)
{
for (MyInt j = MyInt(0); j < MyInt(3); j++)
{
printf("%d,%d\n", int(i), int(j));
}
}
}
void Test2()
{
MyInt i, j;
for (i = MyInt(0); i < MyInt(2); i++)
{
for (j = MyInt(0); j < MyInt(3); j++)
{
printf("%d,%d\n", int(i), int(j));
}
}
}
void Test3()
{
MyInt i, j;
for (i = 0; int(i) < 2; i++)
{
for (j = 0; int(j) < 3; j++)
{
printf("%d,%d\n", int(i), int(j));
}
}
}
int main()
{
printf("Test1---------------------------------\n");
Test1();
printf("Test2---------------------------------\n");
Test2();
printf("Test3---------------------------------\n");
Test3();
return 0;
}
好的,还是使用g++ -O0编译,我们来看看执行结果:
Test1---------------------------------
Constructed: MyInt(0)
Constructed: MyInt(2)
Constructed: MyInt(0)
Constructed: MyInt(3)
0,0
Constructed: MyInt(3)
0,1
Constructed: MyInt(3)
0,2
Constructed: MyInt(3)
Constructed: MyInt(2)
Constructed: MyInt(0)
Constructed: MyInt(3)
1,0
Constructed: MyInt(3)
1,1
Constructed: MyInt(3)
1,2
Constructed: MyInt(3)
Constructed: MyInt(2)
Test2---------------------------------
Constructed: MyInt()
Constructed: MyInt()
Constructed: MyInt(0)
Constructed: MyInt(2)
Constructed: MyInt(0)
Constructed: MyInt(3)
0,0
Constructed: MyInt(3)
0,1
Constructed: MyInt(3)
0,2
Constructed: MyInt(3)
Constructed: MyInt(2)
Constructed: MyInt(0)
Constructed: MyInt(3)
1,0
Constructed: MyInt(3)
1,1
Constructed: MyInt(3)
1,2
Constructed: MyInt(3)
Constructed: MyInt(2)
Test3---------------------------------
Constructed: MyInt()
Constructed: MyInt()
0,0
0,1
0,2
1,0
1,1
1,2
可以看到,Test3
创建对象的次数是最少的,如果对象比较复杂,显然Test3会是最高效的编码方式。
对于整个程序的输出,我们可以分析一下:
- 对于C++内置的基本数据类型,编译器有相关的优化,在双重循环中会避免掉对象的反复分配,但对于复杂的类对象,编译器似乎不会轻易优化,所以我们在
Test1
中仍然看到了对j变量多次分配动作。 - 在
Test2
中,由于我们在循环外定义了j变量,所以这里没有发生对j变量的反复分配,但由于赋值条件i = MyInt(0)
和j = MyInt(0)
以及判断条件i < MyInt(2)
和j < MyInt(3)
中需要构造MyInt(2)
和MyInt(3)
对象,所以我们仍然看到循环中多次的变量分配。 - 而在
Test3
中,我们换了一种方式,用重载运算符=
直接在赋值语句中给对象赋整型值,避免了赋值语句中创建MyInt
对象,并用int(i) < 2
和int(j) < 3
,避免了在判断条件里创建MyInt
对象,所以整段代码里只在循环外分配了两次变量,这其实是最高效的方式。
最后总结:
- 对于使用int等基本数据类型作为循环变量,只要你用的优化方面足够给力的主流的编译器,完全不需要关心在循环外还是循环内定义循环变量。
- 如果循环变量本身是复杂的对象,建议在循环外定义好,并且在
for
循环的赋值语句、判断语句中,都要避免重复创建对象。