归并排序采用的是递归来实现,属于“分而治之”,将目标数组从中间一分为二,之后分别对这两个数组进行排序,排序完毕之后再将排好序的两个数组“归并”到一起,归并排序最重要的也就是这个“归并”的过程,归并的过程中需要额外的跟需要归并的两个数组长度一致的空间,比如需要规定的数组分别为: [3, 6, 8, 11] 和 [1, 3, 12, 15] (虽然逻辑上被划为为两个数组,但实际上这些元素还是位于原来数组中的,只是通过一些 index 将其划分成两个数组,原数组为 [3, 6, 8, 11, 1, 3, 12, 15 ,我们设置三个指针 lo, mid, high 分别为 0,3,7 就可以实现逻辑上的子数组划分)那么需要的额外数组的长度为 4 + 4 = 8 。
归并的过程可以简要地概括为如下:
1) 将两个子数组中的元素复制到新数组 copiedArray 中,以前面提到的例子为例,则 copiedArray = [3, 6, 8, 11, 1, 3, 12, 15] ;
2) 设置两个指针分别指向原子数组中对应的第一个元素,假定这两个指针取名为 leftIdx 和 rightIdx ,则 leftIdx = 0 (对应 copiedArray 中的第一个元素 [3] ), rightIdx = 4 (对应 copiedArray 中的第五个元素 [1] );
3) 比较 leftIdx 和 rightIdx 指向的数组元素值,选取其中较小的一个并将其值赋给原数组中对应的位置 i ,赋值完毕后分别对参与赋值的这两个索引做自增 1 操作,如果 leftIdx 或 rigthIdx 值已经达到对应数组的末尾,则余下只需要将剩下数组的元素按顺序 copy 到余下的位置即可。
下面给个归并的具体实例:
第一趟: 辅助数组 [21 , 28, 39 | 35, 38] (数组被拆分为左右两个子数组,以 | 分隔开) [21 , , , , ] (第一次 21 与 35 比较 , 左边子数组胜出, leftIdx = 0 , i = 0 ) 第二趟: 辅助数组 [21, 28 , 39 | 35, 38] [21 , 28, , , ] (第二次 28 与 35 比较,左边子数组胜出, leftIdx = 1 , i = 1 ) 第三趟: [21, 28, 39 | 35 , 38] [21 , 28 , 35, , ] (第三次 39 与 35 比较,右边子数组胜出, rightIdx = 0 , i = 2 ) 第四趟: [21, 28, 39 | 35, 38 ] [21 , 28 , 35 , 38, ] (第四次 39 与 38 比较,右边子数组胜出, rightIdx = 1 , i = 3 ) 第五趟: [21, 28, 39 | 35, 38] [21 , 28 , 35 , 38 , 39] (第五次时右边子数组已复制完,无需比较 leftIdx = 2 , i = 4 )
以上便是一次归并的过程,我们可以将整个需要排序的数组做有限次拆分(每次一分为二)直到分为长度为1 的小数组为止,长度为 1 时数组已经不用排序了。在这之后再逆序(由于采用递归)依次对这些数组进行归并操作,直到最后一次归并长度为 n / 2 的子数组,归并完成之后数组排序也完成。
归并排序需要的额外空间是所有排序中最多的,每次归并需要与参与归并的两个数组长度之和相同个元素(为了提供辅助数组)。则可以推断归并排序的空间复杂度为 1 + 2 + 4 + … + n = n * ( n + 2) / 4 (忽略了 n 的奇偶性的判断),时间复杂度比较难估,这里小弟也忘记是多少了(囧)。
归并排序是建立在归并操作上的一种有效的排序算法,归并是指将两个已经排序的序列合并成一个序列的操作
实现代码:
/** * 归并排序<br/> * <ul> * <li>申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列</li> * <li>设定两个指针,最初位置分别为两个已经排序序列的起始位置</li> * <li>比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置</li> * <li>重复步骤3直到某一指针达到序列尾</li> * <li>将另一序列剩下的所有元素直接复制到合并序列尾</li> * </ul> * * @param numbers */ public static void mergeSort(int[] numbers, int left, int right) { int t = 1;// 每组元素个数 int size = right - left + 1; while (t < size) { int s = t;// 本次循环每组元素个数 t = 2 * s; int i = left; while (i + (t - 1) < size) { merge(numbers, i, i + (s - 1), i + (t - 1)); i += t; } if (i + (s - 1) < right) merge(numbers, i, i + (s - 1), right); } } /** * 归并算法实现 * * @param data * @param p * @param q * @param r */ private static void merge(int[] data, int p, int q, int r) { int[] B = new int[data.length]; int s = p; int t = q + 1; int k = p; while (s <= q && t <= r) { if (data[s] <= data[t]) { B[k] = data[s]; s++; } else { B[k] = data[t]; t++; } k++; } if (s == q + 1) B[k++] = data[t++]; else B[k++] = data[s++]; for (int i = p; i <= r; i++) data[i] = B[i]; }