1 、Prim算法思想
思想:首先找到权值最小的一条边,由这两个顶点出发,分别去找权值最小的(不能有环的出现);由各个顶点,每次都找权值最小的。
连贯的做法:从顶点的连续角度出发,每次从相应顶点出发,到权值最小的边进行连接。
模型如下:
2、Prim算法实现
lowCost[i]:表示以i为终点的边的最小权值,当lowCost[i] = 0;说明以i为终点的边的最小权值=0;也就是表示i点加入了mst数组;
mst[i]:表示对应lowCost[i]的起点,即说明边<mst[i], i>是mst的一条边;
每次进行一次比较,都要随之更改其lowCost和mst数组;
每并入一个顶点,都更改为0,并且修改相应的记录;都会从内部挑选最小的权值,直到最后所有的lowCost[i] = 0;
均由C++实现(邻接矩阵实现):
template<typename Type, typename E> void GraphMtx<Type, E>::MinSpanTree_Prim(const Type &v){ int n = Graph<Type, E>::getCurVertex(); int *lowCost = new int[n]; //这两个数组是至关重要的 int *mst = new int[n]; int k = getVertexIndex(v); for(int i = 0; i < n; i++){ if(i != k){ lowCost[i] = edge[k][i]; //i:表示最终顶点,lowCost[i]:表示起始到最终顶点的权值; mst[i] = k; //起始顶点 }else{ lowCost[i] = 0; } } int min; int minIndex; int begin; int end; for(i = 0; i < n-1; i++){ min = MAX_COST; minIndex = -1; for(int j = 0; j < n; j++){ if(lowCost[j] != 0 && lowCost[j] < min){ min = lowCost[j]; //最小权值 minIndex = j; //终点 } } begin = mst[minIndex]; //起点 end = minIndex; //终点 printf("%c-->%c : %d\n", getValue(begin), getValue(end), min); lowCost[minIndex] = 0; //赋为0并入mst集合 int cost; for(j = 0; j < n; j++){ //每次都重新更改lowCost和mst数组; cost = edge[minIndex][j]; if(cost < lowCost[j]){ lowCost[j] = cost; mst[j] = minIndex; } } } }
3、完整代码、测试代码、测试结果
(1)、完整代码
#ifndef _GRAPH_H_ #define _GRAPH_H_ #include<iostream> #include<queue> using namespace std; #define VERTEX_DEFAULT_SIZE 10 #define MAX_COST 0x7FFFFFFF template<typename Type, typename E> class Graph{ public: bool isEmpty()const{ return curVertices == 0; } bool isFull()const{ if(curVertices >= maxVertices || curEdges >= curVertices*(curVertices-1)/2) return true; //图满有2种情况:(1)、当前顶点数超过了最大顶点数,存放顶点的空间已满 return false; //(2)、当前顶点数并没有满,但是当前顶点所能达到的边数已满 } int getCurVertex()const{ return curVertices; } int getCurEdge()const{ return curEdges; } public: virtual bool insertVertex(const Type &v) = 0; //插入顶点 virtual bool insertEdge(const Type &v1, const Type &v2, E cost) = 0; //插入边 virtual bool removeVertex(const Type &v) = 0; //删除顶点 virtual bool removeEdge(const Type &v1, const Type &v2) = 0; //删除边 virtual int getFirstNeighbor(const Type &v) = 0; //得到第一个相邻顶点 virtual int getNextNeighbor(const Type &v, const Type &w) = 0; //得到下一个相邻顶点 public: virtual int getVertexIndex(const Type &v)const = 0; //得到顶点下标 virtual void showGraph()const = 0; //显示图 virtual Type getValue(int index)const = 0; public: virtual void DFS(const Type &v) = 0; virtual void BFS(const Type &v) = 0; protected: int maxVertices; //最大顶点数 int curVertices; //当前顶点数 int curEdges; //当前边数 }; template<typename Type, typename E> class GraphMtx : public Graph<Type, E>{ //邻接矩阵继承父类矩阵 #define maxVertices Graph<Type, E>::maxVertices //因为是模板,所以用父类的数据或方法都得加上作用域限定符 #define curVertices Graph<Type, E>::curVertices #define curEdges Graph<Type, E>::curEdges public: GraphMtx(int vertexSize = VERTEX_DEFAULT_SIZE){ //初始化邻接矩阵 maxVertices = vertexSize > VERTEX_DEFAULT_SIZE ? vertexSize : VERTEX_DEFAULT_SIZE; vertexList = new Type[maxVertices]; //申请顶点空间 for(int i = 0; i < maxVertices; i++){ //都初始化为0 vertexList[i] = 0; } edge = new int*[maxVertices]; //申请边的行 for(i = 0; i < maxVertices; i++){ //申请列空间 edge[i] = new int[maxVertices]; } for(i = 0; i < maxVertices; i++){ //赋初值为0 for(int j = 0; j < maxVertices; j++){ if(i != j){ edge[i][j] = MAX_COST; //初始化时都赋为到其它边要花的代价为无穷大。 }else{ edge[i][j] = 0; //初始化时自己到自己认为花费为0 } } } curVertices = curEdges = 0; //当前顶点和当前边数 } GraphMtx(Type (*mt)[4], int sz){ //通过已有矩阵的初始化 int e = 0; //统计边数 maxVertices = sz > VERTEX_DEFAULT_SIZE ? sz : VERTEX_DEFAULT_SIZE; vertexList = new Type[maxVertices]; //申请顶点空间 for(int i = 0; i < maxVertices; i++){ //都初始化为0 vertexList[i] = 0; } edge = new int*[maxVertices]; //申请边的行 for(i = 0; i < maxVertices; i++){ //申请列空间 edge[i] = new Type[maxVertices]; } for(i = 0; i < maxVertices; i++){ //赋初值为矩阵当中的值 for(int j = 0; j < maxVertices; j++){ edge[i][j] = mt[i][j]; if(edge[i][j] != 0){ e++; //统计列的边数 } } } curVertices = sz; curEdges = e/2; } ~GraphMtx(){} public: bool insertVertex(const Type &v){ if(curVertices >= maxVertices){ return false; } vertexList[curVertices++] = v; return true; } bool insertEdge(const Type &v1, const Type &v2, E cost){ int maxEdges = curVertices*(curVertices-1)/2; if(curEdges >= maxEdges){ return false; } int v = getVertexIndex(v1); int w = getVertexIndex(v2); if(v==-1 || w==-1){ cout<<"edge no exit"<<endl; //要插入的顶点不存在,无法插入 return false; } if(edge[v][w] != MAX_COST){ //当前边已经存在,不能进行插入 return false; } edge[v][w] = edge[w][v] = cost; //因为是无向图,对称, 权值赋为cost; return true; } //删除顶点的高效方法 bool removeVertex(const Type &v){ int i = getVertexIndex(v); if(i == -1){ return false; } vertexList[i] = vertexList[curVertices-1]; int edgeCount = 0; for(int k = 0; k < curVertices; k++){ if(edge[i][k] != 0){ //统计删除那行的边数 edgeCount++; } } //删除行 for(int j = 0; j < curVertices; j++){ edge[i][j] = edge[curVertices-1][j]; } //删除列 for(j = 0; j < curVertices; j++){ edge[j][i] = edge[j][curVertices-1]; } curVertices--; curEdges -= edgeCount; return true; } /* //删除顶点用的是数组一个一个移动的方法,效率太低。 bool removeVertex(const Type &v){ int i = getVertexIndex(v); if(i == -1){ return false; } for(int k = i; k < curVertices-1; ++k){ vertexList[k] = vertexList[k+1]; } int edgeCount = 0; for(int j = 0; j < curVertices; ++j){ if(edge[i][j] != 0) edgeCount++; } for(int k = i; k < curVertices-1; ++k) { for(int j = 0; j < curVertices; ++j) { edge[k][j] = edge[k+1][j]; } } for(int k = i; k < curVertices-1; ++k) { for(int j = 0; j < curVertices; ++j) { edge[j][k] = edge[j][k+1]; } } curVertices--; curEdges -= edgeCount; return true; } */ bool removeEdge(const Type &v1, const Type &v2){ int v = getVertexIndex(v1); int w = getVertexIndex(v2); if(v==-1 || w==-1){ //判断要删除的边是否在当前顶点内 return false; //顶点不存在 } if(edge[v][w] == 0){ //这个边根本不存在,没有必要删 return false; } edge[v][w] = edge[w][v] = 0; //删除这个边赋值为0,代表不存在; curEdges--; return true; } int getFirstNeighbor(const Type &v){ int i = getVertexIndex(v); if(i == -1){ return -1; } for(int col = 0; col < curVertices; col++){ if(edge[i][col] != 0){ return col; } } return -1; } int getNextNeighbor(const Type &v, const Type &w){ int i = getVertexIndex(v); int j = getVertexIndex(w); if(i==-1 || j==-1){ return -1; } for(int col = j+1; col < curVertices; col++){ if(edge[i][col] != 0){ return col; } } return -1; } public: void showGraph()const{ if(curVertices == 0){ cout<<"Nul Graph"<<endl; return; } for(int i = 0; i < curVertices; i++){ cout<<vertexList[i]<<" "; } cout<<endl; for(i = 0; i < curVertices; i++){ for(int j = 0; j < curVertices; j++){ if(edge[i][j] != MAX_COST){ cout<<edge[i][j]<<" "; }else{ cout<<"@ "; } } cout<<vertexList[i]<<endl; } } int getVertexIndex(const Type &v)const{ for(int i = 0; i < curVertices; i++){ if(vertexList[i] == v){ return i; } } return -1; } public: Type getValue(int index)const{ return vertexList[index]; } void DFS(const Type &v){ int n = Graph<Type, E>::getCurVertex(); bool *visit = new bool[n]; for(int i = 0; i < n; i++){ visit[i] = false; } DFS(v, visit); delete []visit; } void BFS(const Type &v){ int n = Graph<Type, E>::getCurVertex(); bool *visit = new bool[n]; for(int i = 0; i < n; i++){ visit[i] = false; } cout<<v<<"-->"; int index = getVertexIndex(v); visit[index] = true; queue<int> q; //队列中存放的是顶点下标; q.push(index); int w; while(!q.empty()){ index = q.front(); q.pop(); w = getFirstNeighbor(getValue(index)); while(w != -1){ if(!visit[w]){ cout<<getValue(w)<<"-->"; visit[w] = true; q.push(w); } w = getNextNeighbor(getValue(index), getValue(w)); } } delete []visit; } public: void MinSpanTree_Kruskal(); void MinSpanTree_Prim(const Type &v); protected: void DFS(const Type &v, bool *visit){ cout<<v<<"-->"; int index = getVertexIndex(v); visit[index] = true; int w = getFirstNeighbor(v); while(w != -1){ if(!visit[w]){ DFS(getValue(w), visit); } w = getNextNeighbor(v, getValue(w)); } } private: Type *vertexList; //存放顶点的数组 int **edge; //存放边关系的矩阵 }; ////////////////////////////////////////////////////////////////////////////////////////////////////// typedef struct MstEdge{ int x; //row int y; //col int cost; }MstEdge; int cmp(const void *a, const void *b){ return (*(MstEdge*)a).cost - (*(MstEdge*)b).cost; } bool isSame(int *father, int i, int j){ while(father[i] != i){ i = father[i]; } while(father[j] != j){ j = father[j]; } return i == j; } void markSame(int *father, int i, int j){ while(father[i] != i){ i = father[i]; } while(father[j] != j){ j = father[j]; } father[j] = i; } template<typename Type, typename E> void GraphMtx<Type, E>::MinSpanTree_Kruskal(){ int n = Graph<Type, E>::getCurVertex(); //由于要用到父类的保护数据或方法,有模板的存在,必须加上作用域限定符; MstEdge *edge1 = new MstEdge[n*(n-1)/2]; int k = 0; for(int i = 0; i < n; i++){ for(int j = i+1; j < n; j++){ if(edge[i][j] != MAX_COST){ edge1[k].x = i; edge1[k].y = j; edge1[k].cost = edge[i][j]; k++; } } } qsort(edge1, k, sizeof(MstEdge), cmp); int *father = new int[n]; Type v1, v2; for(i = 0; i < n; i++){ father[i] = i; } for(i = 0; i < n; i++){ if(!isSame(father, edge1[i].x, edge1[i].y)){ v1 = getValue(edge1[i].x); v2 = getValue(edge1[i].y); printf("%c-->%c : %d\n", v1, v2, edge1[i].cost); markSame(father, edge1[i].x, edge1[i].y); } } } template<typename Type, typename E> void GraphMtx<Type, E>::MinSpanTree_Prim(const Type &v){ int n = Graph<Type, E>::getCurVertex(); int *lowCost = new int[n]; int *mst = new int[n]; int k = getVertexIndex(v); for(int i = 0; i < n; i++){ if(i != k){ lowCost[i] = edge[k][i]; mst[i] = k; }else{ lowCost[i] = 0; } } int min; int minIndex; int begin; int end; for(i = 0; i < n-1; i++){ min = MAX_COST; minIndex = -1; for(int j = 0; j < n; j++){ if(lowCost[j] != 0 && lowCost[j] < min){ min = lowCost[j]; minIndex = j; } } begin = mst[minIndex]; end = minIndex; printf("%c-->%c : %d\n", getValue(begin), getValue(end), min); lowCost[minIndex] = 0; int cost; for(j = 0; j < n; j++){ cost = edge[minIndex][j]; if(cost < lowCost[j]){ lowCost[j] = cost; mst[j] = minIndex; } } } } #endif
(2)、测试代码
#include"Graph1.h" int main(void){ GraphMtx<char,int> gm; gm.insertVertex(‘A‘); //0 gm.insertVertex(‘B‘); //1 gm.insertVertex(‘C‘); //2 gm.insertVertex(‘D‘); //3 gm.insertVertex(‘E‘); //4 gm.insertVertex(‘F‘); //5 gm.insertEdge(‘A‘,‘B‘,6); gm.insertEdge(‘A‘,‘C‘,1); gm.insertEdge(‘A‘,‘D‘,5); gm.insertEdge(‘B‘,‘C‘,5); gm.insertEdge(‘B‘,‘E‘,3); gm.insertEdge(‘C‘,‘E‘,6); gm.insertEdge(‘C‘,‘D‘,5); gm.insertEdge(‘C‘,‘F‘,4); gm.insertEdge(‘D‘,‘F‘,2); gm.insertEdge(‘E‘,‘F‘,6); gm.showGraph(); gm.MinSpanTree_Kruskal(); cout<<"---------------------------------------------------------"<<endl; gm.MinSpanTree_Prim(‘A‘); return 0; }
(3)、测试结果
测试图模型:
时间: 2024-10-04 16:31:37