深入浅出~Linux设备驱动之字符设备驱动

一、linux系统将设备分为3类:字符设备、块设备、网络设备。使用驱动程序:

  • 字符设备:是指只能一个字节一个字节读写的设备,不能随机读取设备内存中的某一数据,读取数据需要按照先后数据。字符设备是面向流的设备,常见的字符设备有鼠标、键盘、串口、控制台和LED设备等。
  • 块设备:是指可以从设备的任意位置读取一定长度数据的设备。块设备包括硬盘、磁盘、U盘和SD卡等。

  每一个字符设备或块设备都在/dev目录下对应一个设备文件。linux用户程序通过设备文件(或称设备节点)来使用驱动程序操作字符设备和块设备。

二、字符设备、字符设备驱动与用户空间访问该设备的程序三者之间的关系。

  如图,在Linux内核中使用cdev结构体来描述字符设备,通过其成员dev_t来定义设备号(分为主、次设备号)以确定字符设备的唯一性。通过其成员file_operations来定义字符设备驱动提供给VFS的接口函数,如常见的open()、read()、write()等。

在Linux字符设备驱动中,模块加载函数通过register_chrdev_region( ) 或alloc_chrdev_region( )来静态或者动态获取设备号,通过cdev_init( )建立cdev与file_operations之间的连接,通过cdev_add( )向系统添加一个cdev以完成注册。模块卸载函数通过cdev_del( )来注销cdev,通过unregister_chrdev_region( )来释放设备号。

用户空间访问该设备的程序通过Linux系统调用,如open( )、read( )、write( ),来“调用”file_operations来定义字符设备驱动提供给VFS的接口函数。

三、字符设备驱动模型

1. 驱动初始化

1.1. 分配cdev

在2.6的内核中使用cdev结构体来描述字符设备,在驱动中分配cdev,主要是分配一个cdev结构体与申请设备号,以按键驱动为例:

 1 /*……*/
 2 /* 分配cdev*/
 3 struct cdev btn_cdev;
 4 /*……*/
 5 /* 1.1 申请设备号*/
 6     if(major){
 7         //静态
 8         dev_id = MKDEV(major, 0);
 9         register_chrdev_region(dev_id, 1, "button");
10     } else {
11         //动态
12         alloc_chardev_region(&dev_id, 0, 1, "button");
13         major = MAJOR(dev_id);
14     }
15 /*……*/

从上面的代码可以看出,申请设备号有动静之分,其实设备号还有主次之分。

在Linux中以主设备号用来标识与设备文件相连的驱动程序。次编号被驱动程序用来辨别操作的是哪个设备。cdev 结构体的 dev_t 成员定义了设备号,为 32 位,其中高 12 位为主设备号,低20 位为次设备号。

设备号的获得与生成:

获得:主设备号:MAJOR(dev_t dev);

次设备号:MINOR(dev_t dev);

生成:MKDEV(int major,int minor);

设备号申请的动静之分:

静态:

1 int register_chrdev_region(dev_t from, unsigned count, const char *name);
2 /*功能:申请使用从from开始的count 个设备号(主设备号不变,次设备号增加)*/

静态申请相对较简单,但是一旦驱动被广泛使用,这个随机选定的主设备号可能会导致设备号冲突,而使驱动程序无法注册。

动态:

1 int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count,const char *name);
2 /*功能:请求内核动态分配count个设备号,且次设备号从baseminor开始。*/

动态申请简单,易于驱动推广,但是无法在安装驱动前创建设备文件(因为安装前还没有分配到主设备号)。

1.2. 初始化cdev

1     void cdev_init(struct cdev *, struct file_operations *);
2         cdev_init()函数用于初始化 cdev 的成员,并建立 cdev 和 file_operations 之间的连接。

1.3. 注册cdev

1         int cdev_add(struct cdev *, dev_t, unsigned);2      cdev_add()函数向系统添加一个 cdev,完成字符设备的注册。

1.4. 硬件初始化

硬件初始化主要是硬件资源的申请与配置,以TQ210的按键驱动为例:

1 /* 1.4 硬件初始化*/
2     //申请GPIO资源
3     gpio_request(S5PV210_GPH0(0), "GPH0_0");
4     //配置输入
5     gpio_direction_input(S5PV210_GPH0(0));

  2.实现设备操作

用户空间的程序以访问文件的形式访问字符设备,通常进行open、read、write、close等系统调用。而这些系统调用的最终落实则是file_operations结构体中成员函数,它们是字符设备驱动与内核的接口。以TQ210的按键驱动为例:

1 /*设备操作集合*/
2 static struct file_operations btn_fops = {
3     .owner = THIS_MODULE,
4     .open = button_open,
5     .release = button_close,
6     .read = button_read
7 };

上面代码中的button_open、button_close、button_read是要在驱动中自己实现的。file_operations结构体成员函数有很多个,下面就选几个常见的来展示:

2.1. open()函数

原型:

1 int(*open)(struct inode *, struct file*);
2 /*打开*/

 2.2. read( )函数

原型:

ssize_t(*read)(struct file *, char __user*, size_t, loff_t*);
/*用来从设备中读取数据,成功时函数返回读取的字节数,出错时返回一个负值*/

2.3. write( )函数

原型:

1 ssize_t(*write)(struct file *, const char__user *, size_t, loff_t*);
2 /*向设备发送数据,成功时该函数返回写入的字节数。如果此函数未被实现,
3   当用户进行write()系统调用时,将得到-EINVAL返回值*/

2.4. close( )函数

原型:

1 int(*release)(struct inode *, struct file*);
2 /*关闭*/

2.5. 补充说明

1. 在Linux字符设备驱动程序设计中,有3种非常重要的数据结构:struct file、struct inode、struct file_operations。

struct file 代表一个打开的文件。系统中每个打开的文件在内核空间都有一个关联的struct file。它由内核在打开文件时创建, 在文件关闭后释放。其成员loff_t f_pos 表示文件读写位置。

struct inode 用来记录文件的物理上的信息。因此,它和代表打开文件的file结构是不同的。一个文件可以对应多个file结构,但只有一个inode结构。其成员dev_t i_rdev表示设备号。

struct file_operations 一个函数指针的集合,定义能在设备上进行的操作。结构中的成员指向驱动中的函数,这些函数实现一个特别的操作, 对于不支持的操作保留为NULL。

2. 在read( )和write( )中的buff 参数是用户空间指针。因此,它不能被内核代码直接引用,因为用户空间指针在内核空间时可能根本是无效的——没有那个地址的映射。因此,内核提供了专门的函数用于访问用户空间的指针:

1 unsigned long copy_from_user(void *to, const void __user *from, unsigned long count);
2 unsigned long copy_to_user(void __user *to, const void *from, unsigned long count);

    3. 驱动注销

3.1. 删除cdev

在字符设备驱动模块卸载函数中通过cdev_del()函数向系统删除一个cdev,完成字符设备的注销。

/*原型:*/
void cdev_del(struct cdev *);
/*例:*/
cdev_del(&btn_cdev); 

3.2. 释放设备号

在调用cdev_del()函数从系统注销字符设备之后,unregister_chrdev_region()应该被调用以释放原先申请的设备号。

/*原型:*/
void unregister_chrdev_region(dev_t from, unsigned count);
/*例:*/
unregister_chrdev_region(MKDEV(major, 0), 1);

四、字符设备驱动程序基础:

4.1 cdev结构体

在Linux2.6 内核中,使用cdev结构体来描述一个字符设备,cdev结构体的定义如下:

 1 struct cdev {
 2
 3       struct kobject kobj;
 4
 5       struct module *owner;  /*通常为THIS_MODULE*/
 6
 7       struct file_operations *ops; /*在cdev_init()这个函数里面与cdev结构联系起来*/
 8
 9       struct  list_head list;
10
11       dev_t  dev;  /*设备号*/
12
13       unsigned int count;
14
15 };

cdev 结构体的dev_t 成员定义了设备号,为32位,其中12位是主设备号,20位是次设备号,我们只需使用二个简单的宏就可以从dev_t 中获取主设备号和次设备号:

MAJOR(dev_t dev)

MINOR(dev_t dev)

相反地,可以通过主次设备号来生成dev_t:

MKDEV(int major,int minor)

4.2 Linux 2.6内核提供一组函数用于操作cdev 结构体:

1:void cdev_init(struct cdev*,struct file_operations *);

2:struct cdev *cdev_alloc(void);

3:int cdev_add(struct cdev *,dev_t,unsigned);

4:void cdev_del(struct cdev *);

其中(1)用于初始化cdev结构体,并建立cdev与file_operations 之间的连接。(2)用于动态分配一个cdev结构,(3)向内核注册一个cdev结构,(4)向内核注销一个cdev结构

4.3  Linux 2.6内核分配和释放设备号

在调用cdev_add()函数向系统注册字符设备之前,首先应向系统申请设备号,有二种方法申请设备号,一种是静态申请设备号:

5:int register_chrdev_region(dev_t from,unsigned count,const char *name)

另一种是动态申请设备号:

6:int alloc_chrdev_region(dev_t *dev,unsigned baseminor,unsigned count,const char *name);

其中,静态申请是已知起始设备号的情况,如先使用cat /proc/devices 命令查得哪个设备号未事先使用(不推荐使用静态申请);动态申请是由系统自动分配,只需设置major = 0即可。

相反地,在调用cdev_del()函数从系统中注销字符设备之后,应该向系统申请释放原先申请的设备号,使用:

7:void unregister_chrdev_region(dev_t from,unsigned count);

4.4 cdev结构的file_operations结构体

这个结构体是字符设备当中最重要的结构体之一,file_operations 结构体中的成员函数指针是字符设备驱动程序设计的主体内容,这些函数实际上在应用程序进行Linux 的 open()、read()、write()、close()、seek()、ioctl()等系统调用时最终被调用。

 1 struct file_operations {
 2
 3 /*拥有该结构的模块计数,一般为THIS_MODULE*/
 4  struct module *owner;
 5
 6 /*用于修改文件当前的读写位置*/
 7  loff_t (*llseek) (struct file *, loff_t, int);
 8
 9 /*从设备中同步读取数据*/
10  ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
11
12 /*向设备中写数据*/
13  ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
14
15
16  ssize_t (*aio_read) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
17  ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
18  int (*readdir) (struct file *, void *, filldir_t);
19
20 /*轮询函数,判断目前是否可以进行非阻塞的读取或写入*/
21  unsigned int (*poll) (struct file *, struct poll_table_struct *);
22
23 /*执行设备的I/O命令*/
24  int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
25
26
27  long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
28  long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
29
30 /*用于请求将设备内存映射到进程地址空间*/
31  int (*mmap) (struct file *, struct vm_area_struct *);
32
33 /*打开设备文件*/
34  int (*open) (struct inode *, struct file *);
35  int (*flush) (struct file *, fl_owner_t id);
36
37 /*关闭设备文件*/
38  int (*release) (struct inode *, struct file *);
39
40
41  int (*fsync) (struct file *, struct dentry *, int datasync);
42  int (*aio_fsync) (struct kiocb *, int datasync);
43  int (*fasync) (int, struct file *, int);
44  int (*lock) (struct file *, int, struct file_lock *);
45  ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
46  unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
47  int (*check_flags)(int);
48  int (*flock) (struct file *, int, struct file_lock *);
49  ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
50  ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
51  int (*setlease)(struct file *, long, struct file_lock **);
52 };

4.5 file结构

file  结构代表一个打开的文件,它的特点是一个文件可以对应多个file结构。它由内核再open时创建,并传递给在该文件上操作的所有函数,直到最后close函数,在文件的所有实例都被关闭之后,内核才释放这个数据结构。

在内核源代码中,指向 struct file 的指针通常比称为filp,file结构有以下几个重要的成员:

 1 struct file{
 2
 3 mode_t   fmode; /*文件模式,如FMODE_READ,FMODE_WRITE*/
 4
 5 ......
 6
 7 loff_t   f_pos;  /*loff_t 是一个64位的数,需要时,须强制转换为32位*/
 8
 9 unsigned int f_flags;  /*文件标志,如:O_NONBLOCK*/
10
11 struct  file_operations  *f_op;
12
13 void  *private_data;  /*非常重要,用于存放转换后的设备描述结构指针*/
14
15 .......
16
17 };

4.6 inode 结构

内核用inode 结构在内部表示文件,它是实实在在的表示物理硬件上的某一个文件,且一个文件仅有一个inode与之对应,同样它有二个比较重要的成员:

 1 struct inode{
 2
 3 dev_t  i_rdev;            /*设备编号*/
 4
 5 struct cdev *i_cdev;  /*cdev 是表示字符设备的内核的内部结构*/
 6
 7 };
 8
 9 可以从inode中获取主次设备号,使用下面二个宏:
10
11 /*驱动工程师一般不关心这二个宏*/
12
13 unsigned int imajor(struct inode *inode);
14
15 unsigned int iminor(struct inode *inode); 

4.7字符设备驱动模块加载与卸载函数

在字符设备驱动模块加载函数中应该实现设备号的申请和cdev 结构的注册,而在卸载函数中应该实现设备号的释放与cdev结构的注销。

我们一般习惯将cdev内嵌到另外一个设备相关的结构体里面,该设备包含所涉及的cdev、私有数据及信号量等等信息。常见的设备结构体、模块加载函数、模块卸载函数形式如下:

 1 /*设备结构体*/
 2
 3 struct  xxx_dev{
 4
 5       struct   cdev   cdev;
 6
 7       char *data;
 8
 9       struct semaphore sem;
10
11       ......
12
13 };
14
15
16
17 /*模块加载函数*/
18
19 static int   __init  xxx_init(void)
20
21 {
22
23       .......
24
25       初始化cdev结构;
26
27       申请设备号;
28
29       注册设备号;
30
31
32
33        申请分配设备结构体的内存;  /*非必须*/
34
35 }
36
37
38
39 /*模块卸载函数*/
40
41 static void  __exit   xxx_exit(void)
42
43 {
44
45        .......
46
47        释放原先申请的设备号;
48
49        释放原先申请的内存;
50
51        注销cdev设备;
52
53 }
54
55  

4.8字符设备驱动的 file_operations 结构体重成员函数

 1 /*读设备*/
 2
 3 ssize_t   xxx_read(struct file *filp,  char __user *buf,  size_t  count,  loff_t *f_pos)
 4
 5 {
 6
 7         ......
 8
 9         使用filp->private_data获取设备结构体指针;
10
11         分析和获取有效的长度;
12
13         /*内核空间到用户空间的数据传递*/
14
15         copy_to_user(void __user *to,  const void *from,  unsigned long count);
16
17         ......
18
19 }
20
21 /*写设备*/
22
23 ssize_t   xxx_write(struct file *filp,  const char  __user *buf,  size_t  count,  loff_t *f_pos)
24
25 {
26
27         ......
28
29         使用filp->private_data获取设备结构体指针;
30
31         分析和获取有效的长度;
32
33         /*用户空间到内核空间的数据传递*/
34
35         copy_from_user(void *to,  const  void   __user *from,  unsigned long count);
36
37         ......
38
39 }
40
41 /*ioctl函数*/
42
43 static int xxx_ioctl(struct inode *inode,struct file *filp,unsigned int cmd,unsigned long arg)
44
45 {
46
47       ......
48
49       switch(cmd){
50
51            case  xxx_CMD1:
52
53                         ......
54
55                         break;
56
57            case  xxx_CMD2:
58
59                        .......
60
61                       break;
62
63            default:
64
65                       return -ENOTTY;  /*不能支持的命令*/
66
67       }
68
69       return 0;
70
71 }

4.9、字符设备驱动文件操作结构体模板

 1 struct file_operations xxx_fops = {
 2
 3       .owner = THIS_MODULE,
 4
 5       .open = xxx_open,
 6
 7       .read = xxx_read,
 8
 9      .write = xxx_write,
10
11      .close = xxx_release,
12
13      .ioctl = xxx_ioctl,
14
15      .lseek = xxx_llseek,
16
17 };
18
19 上面的写法需要注意二点,一:结构体成员之间是以逗号分开的而不是分号,结构体字段结束时最后应加上分号。

五、字符设备驱动小结:

  字符设备是3大类设备(字符设备、块设备、网络设备)中较简单的一类设备,其驱动程序中完成的主要工作是初始化、添加和删除cdev结构体,申请和释放设备号,以及填充file_operation结构体中操作函数,并实现file_operations结构体中的read()、write()、ioctl()等重要函数。如图所示为cdev结构体、file_operations和用户空间调用驱动的关系。

  版权所有,转载请注明转载地址:http://www.cnblogs.com/lihuidashen/p/4426129.html

时间: 2024-12-24 12:29:23

深入浅出~Linux设备驱动之字符设备驱动的相关文章

【转】深入浅出:Linux设备驱动之字符设备驱动

深入浅出:Linux设备驱动之字符设备驱动 一.linux系统将设备分为3类:字符设备.块设备.网络设备.使用驱动程序: 字符设备:是指只能一个字节一个字节读写的设备,不能随机读取设备内存中的某一数据,读取数据需要按照先后数据.字符设备是面向流的设备,常见的字符设备有鼠标.键盘.串口.控制台和LED设备等. 块设备:是指可以从设备的任意位置读取一定长度数据的设备.块设备包括硬盘.磁盘.U盘和SD卡等. 每一个字符设备或块设备都在/dev目录下对应一个设备文件.linux用户程序通过设备文件(或称

《驱动学习 - 字符设备驱动》

1.1字符设备驱动基础 字符设备驱动:设备对数据的处理是按照字节流的形式进行的. 在linux中,“一切皆文件”(除了网络设备),这表示设备最终都会体现为一个文件.设备文件通常位于/dev目录下. 内核通常用主设备号区别一类设备,次设备号用于区分同一类设备的不同个人或不同分区. 手动创建设备文件 mknod /dev/vser0 c 256 0 mknod是make node的缩写.用于创建一个节点(设备文件也叫设备节点).在linux系统中,一个节点代表一个文件. 原文地址:https://w

指定子设备号创建字符设备

目录 指定子设备号字符设备 流程 实例程序 测试 title: 指定子设备号创建字符设备 tags: linux date: 2018/12/28 19:57:24 toc: true --- 指定子设备号字符设备 流程 内核中设备号分为主设备号和次设备号,以前注册字符设备驱动的时候,直接占用了主设备号包含了255个子设备号,也就是内核最多支持255个设备驱动(如果主设备号占据8位) 在Linux2.6中内核可以指定主设备号和对应的子设备号给一个fileoperation,如下图所示 流程如下:

linux设备驱动之字符设备驱动模型(2)

在上一篇中我们已经了解了字符设备驱动的原理,也了解了应用层调用内核函数的机制,但是我们每次操作设备,都必须首先通过mknod命令创建一个设备文件名,比如说我们要打开u盘,硬盘等这些设备,难道我们还要自己创建,就如同刘老师常说的一句话,这也太山寨了吧,所以我们今天我们来点比较专业的,让函数帮我们自动创建: 在Linux 下,设备和驱动通常都需要挂接在一种总线上,总线有PCI.USB.I2C.SPI 等等,总线是处理器和设备之间的通道,在设备模型中,所有的设备都通过总线相连,一总线来管理设备和驱动函

Linux应用程序访问字符设备驱动详细过程解析

下面先通过一个编写好的内核驱动模块来体验以下字符设备驱动 可以暂时先忽略下面的代码实现! memdev.c #include <linux/module.h> #include <linux/fs.h> #include <linux/init.h> #include <linux/cdev.h> #include <asm/uaccess.h> int dev1_registers[5]; int dev2_registers[5]; stru

Linux设备驱动之字符设备驱动

一.linux系统将设备分为3类:字符设备.块设备.网络设备. 应用程序调用的流程框图: 三种设备的定义分别如下, 字符设备:只能一个字节一个字节的读写的设备,不能随机读取设备内存中的某一数据,读取数据需要按照先后顺序进行.字符设备是面向流的设备,常见的字符设备如鼠标.键盘.串口.控制台.LED等. 块设备:是指可以从设备的任意位置读取一定长度的数据设备.块设备如硬盘.磁盘.U盘和SD卡等存储设备. 网络设备:网络设备比较特殊,不在是对文件进行操作,而是由专门的网络接口来实现.应用程序不能直接访

linux驱动之字符设备

第一部分:字符设备工作过程1.系统调用和驱动程序的关联关键结构体:struct file_operation:file_operation结构体的每一个成员的名字都对应着一个系统调用.用户进程利用系统调用在对设备文件进行诸如read/write操作时,系统调用通过设备文件的主设备号找到相应的设备驱动程序,然后读取这个数据结构相应的函数指针,接着把控制权交给该函数.这是linux的设备驱动程序工作的基本原理.编写设备驱动程序的主要工作就是编写子函数,并填充file_operations的各个域.

【驱动】——字符设备驱动程序

字符设备不得不说的那些事: 一: 设备号:主设备号,次设备号: 数据类型 dev_t(unsigned int) 定义设备号  高12位主设备号 低20位次设备号: 二: 设备号的作用: 应用程序通过主设备号找到驱动程序: 三:如何分配设备号: ①:静态分配: 1: cat /proc/devices 查看linux系统哪个设备号没有被占用: 2: dev_t dev_id = MKDEV(主设备号,次设备号)  根据你的设备个数分配次设备号 如果设备个数只有一个,一般此设备号从0开始: 3: 

字符设备驱动体验,字符设备驱动学习

字符设备驱动学习 在Linux系统中,驱动程序通常采用内核模块的程序结构来进行编码.因此,编译/安装一个驱动程序,其实质就是编译/安装一个内核模块. 一.编译安装字符设备驱动程序 memdev文件中:在这个文件里和真实的硬件无关,只是虚构了一个数组 1 #include <linux/module.h> 2 #include <linux/fs.h> 3 #include <linux/init.h> 4 #include <linux/cdev.h> 5