[家里蹲大学数学杂志]第304期华中师范大学2004年高等代数考研试题参考解答

1. ($15‘$) 设 $a_1,a_2,\cdots,a_n$ 是数域 $\bbP$ 上的 $n$ 个不同的数, 解线性方程组 $$\bex \ba{rrrrrrrrl} x_1&+&x_2&+&\cdots&+&x_n&=&1\\ a_1x_1&+&a_2x_2&+&\cdots&+&a_nx_n&=&a_n\\ a_1^2x_1&+&a_2^2x_2&+&\cdots&+&a_n^2x_n&=&a_n^2\\ \cdots&\cdots&\cdots&\cdots&\cdots&\cdots&\cdots&\cdots&\\ a_1^{n-1}x_1&+&a_2^{n-1}x_2&+&\cdots&+&a_n^{n-1}x_n&=&a_n^{n-1} \ea \eex$$

解答: 由于系数矩阵的行列式 $\neq 0$, 而原线性方程组有且仅有一个解. 又显然 $(0,\cdots,0,1)^T$ 是一个解, 而为原线性方程组的唯一解.

2. ($15‘$) 设 $\bbP$ 是数域, $A\in \bbP^{n\times n}$, $m(x)=x^3+2x+1$ 是 $A$ 的最小多项式, 求 $A^{-1}$.

证明: $$\bex A^3+2A+E=0\ra A(-A^2-2E)=E\ra A^{-1}=-A^2-2E. \eex$$

3. ($30‘$) 设 $\bbP$ 是数域, $A=(a_{ij})=(\al_1,\cdots,\al_n)\in \bbP^{n\times n}$, $a_{nn}$ 的代数余子式 $A_{nn}\neq 0$.

(1) 证明: $\al_1,\cdots,\al_{n-1}$ 线性无关;

(2) 当 $|A|=0$ 时, 求线性方程组 $A^*x=0$ 的基础解系, 其中 $A^*$ 是 $A$ 的伴随矩阵.

证明:

(1) 由 $A_{nn}\neq 0$ 知 $A_{nn}$ 所定的矩阵的列向量 $$\bex \sex{\ba{l} a_{11}\\ \vdots\\ a_{n-1,1} \ea},\quad\cdots,\quad \sex{\ba{l} a_{1,n-1}\\ \vdots\\ a_{n-1,n-1} \ea} \eex$$ 线性无关, 而多加一个分量后的 $\al_1,\cdots,\al_{n-1}$ 也线性无关.

(2) 由 $|A|=0$ 知 $\rank(A)\leq n-1$. 若 $\rank(A)=n-2$, 则 $A^*=0$, 这与 $A_{nn}\neq 0$ 矛盾. 故 $\rank(A)=n-1$, $\rank(A^*)=1$. 又 $$\bex A^*A=|A|E=0\ra A^*(\al_1,\cdots,\al_{n-1})=0, \eex$$ 我们知 $\al_1,\cdots,\al_{n-1}$ 为 $A^*x=0$ 的基础解系.

4. ($30‘$) 设 $\bbP$ 是数域, $$\bex V=\sed{A\in\bbP^{n\times n}; A^T=A},\quad V_2=\sed{B\in\bbP^{n\times n}; B\mbox{ 是上三角阵}}. \eex$$

(1) 证明 $V_1,V_2$ 均为 $\bbP^{n\times n}$ 的线性子空间;

(2) 证明 $$\bex \bbP^{n\times n}=V_1+V_2,\quad \bbP^{n\times n}\neq V_1\oplus V_2. \eex$$

证明:

(1) 显然成立.

(2) 对任一 $C\in \bbP^{n\times n}$, $$\beex \bea C&=\sex{\ba{cccc} c_{11}&c_{12}&\cdots&c_{1n}\\ c_{21}&c_{22}&\cdots&c_{2n}\\ \vdots&\vdots&\vdots&\vdots\\ c_{n1}&c_{n2}&\cdots&c_{nn} \ea}\\ &=\sex{\ba{cccc} c_{11}&c_{21}&\cdots&c_{n1}\\ c_{21}&c_{22}&\cdots&c_{n2}\\ \vdots&\vdots&\vdots&\vdots\\ c_{n1}&c_{n2}&\cdots&c_{nn} \ea}+\sex{\ba{cccc} 0&c_{12}-c_{21}&\cdots&c_{1n}-c_{n1}\\ 0&0&\cdots&c_{2n}-c_{n2}\\ \vdots&\vdots&\vdots&\vdots\\ 0&0&\cdots&0 \ea}\\ &\in V_1+V_2. \eea \eeex$$ 但 $$\bex 0\neq \sex{\ba{ccc} 1&&\\ &\ddots&\\ &&1 \ea}\in V_1\cap V_2, \eex$$ 而 $\bbP^{n\times n}\neq V_1\oplus V_2.$

5. ($30‘$) 设 $p(x)$ 是数域 $\bbP$ 上的不可约多项式, $\al\neq 0$ 是 $p(x)$ 的复根.

(1) 证明 $p(x)$ 的常数项不等于零;

(2) 证明对任意正整数 $m$, $(p(x),x^m)=1$;

(3) 设 $p(x)=x^3-2x+2$, 求 $\dps{\frac{1}{\al^5}}$.

证明:

(1) 用反证法. 若 $p(x)$ 的常数项为 $0$, 则 $$\bex p(x)=c_nx^n+\cdots+c_1x=xq(x), \eex$$ 又 $$\bex p(\al)=\al q(\al)\ra q(\al)=0\ra \deg q(x)\geq 1. \eex$$ 因此, $p(x)$ 分解成了两个次数均小于 $\deg p(x)$ 的多项式的乘积. 这与 $p(x)$ 不可约矛盾. 故有结论.

(2) 设 $(p(x),x^m)=d(x)$, 则 $d(x)\mid p(x)$. 由 $p(x)$ 不可约知 $$\bex d(x)=1\mbox{ 或 }d(x)=\frac{1}{c^n}p(x). \eex$$ 若 $\dps{d(x)=\frac{1}{c^n}p(x)}$, 则 $$\beex \bea d(x)\mid x^m &\ra p(x)\mid x^m\\ &\ra x^m=r(x)p(x)\\ &\ra 0\neq \al^m=q(\al)p(\al)=0. \eea \eeex$$ 这是一个矛盾. 故 $d(x)=1$.

(3) 由 $$\bex x^5=(x^2+2)p(x)+r_1(x),\quad r_1(x)=-2x^2+4x-4, \eex$$ $$\bex p(x)=\sex{-\frac{x}{2}-1}r_1(x)-2 \eex$$ 知 $$\beex \bea 2=\sex{-\frac{x}{2}-1}r_1(x)-p(x)\\ &=\sex{-\frac{x}{2}-1}\sez{x^5-(x^2+2)p(x)}-p(x). \eea \eeex$$ 令 $x=\al$ 即有 $$\bex 2=\sex{-\frac{\al}{2}-1} \al^5\ra \frac{1}{\al^5}=-\frac{\al+2}{4}. \eex$$

6. ($20‘$) 设 $n$ 元实二次型 $f(x_1,\cdots,x_n)=x^TAx$ 经过正交线性替换 $x=Qy$ ($Q$ 为正交阵) 化为 $$\bex y_1^2+2y_2^2+\cdots+ny_n^2. \eex$$ 证明:

(1) $A$ 的特征值为 $1,2,\cdots,n$;

(2) 存在正交阵 $B$ 使得 $A=B^2$.

证明:

(1) 由 $$\bex f(x)=x^TAx =y^TQ^TAQy =\sum_i iy_i^2 \eex$$ 即知 $$\bex Q^TAQ=\diag(1,2,\cdots,n). \eex$$ 由相似矩阵有相同的特征值即知结论.

(2) 取 $$\bex B=Q\diag(1,\sqrt{2},\cdots,\sqrt{n})Q^T \eex$$ 即有结论.

7. ($20‘$) 设 $\scrA$ 是数域 $\bbP$ 上 $n$ 维线性空间 $V$ 的线性变换, $\al\in V$, $\scrA^{n-1}(\al)\neq 0$, $\scrA^n(\al)=0$. 证明:

(1) $\al,\scrA(\al),\cdots,\scrA^{n-1}(\al)$ 是 $V$ 的一组基;

(2) 设 $W$ 是 $\scrA$-不变子空间, $a_1,a_2,\cdots,a_n\in \bbP,\ a_1\neq 0$, 且存在向量 $$\bex \beta=a_1\al+a_2\scrA(\al)+\cdots+a_n\scrA^{n-1}(\al)\in W, \eex$$ 则 $W=V$.

证明:

(1) 设 $$\bex k_0\al+k_1\scrA(\al)+\cdots+k_{n-1}\scrA^{n-1}(\al)=0, \eex$$ 用 $\scrA$ 作用 $n-2$ 次后发现 $k_0\scrA^{n-1}(\al)=0$. 既然 $\scrA^{n-1}(\al)=0$, 我们有 $k_0=0$. 代入上式, $$\bex k_1\scrA(\al)+\cdots+k_{n-1}\scrA^{n-1}(\al)=0. \eex$$ 用 $\scrA$ 作用 $n-2$ 次同样发现 $k_1=0$. 等等. 我们得到所有 $k_i=0$.

(2) 由 $W$ 是 $\scrA$-不变子空间知 $$\beex \bea \scrA(\beta)&=a_1\scrA(\al)+a_2\scrA^2(\al)+\cdots+a_{n-1}\scrA^{n-1}(\al)\in W,\\ \scrA^2(\beta)&=a_1\scrA^2(\al)+a_2\scrA^3(\al)+\cdots+a_{n-2}\scrA^{n-1}(\al)\in W,\\ \cdots&=\cdots,\\ \scrA^{n-2}(\beta)&=a_1\scrA^{n-2}(\al)+a_2\scrA^{n-1}(\al)\in W,\\ \scrA^{n-1}(\beta)&=a_1\scrA^{n-1}(\al)\in W. \eea \eeex$$ 由 $a_1\neq 0$ 及最后一式知 $\scrA^{n-1}(\al)\in W$. 代入倒数第二式即知 $\scrA^{n-2}(\al)\in W$. 等等. 我们得到 $$\bex \al,\scrA(\al),\cdots,\scrA^{n-1}(\al)\in W. \eex$$ 于是 $W=V$.

时间: 2024-10-07 06:31:06

[家里蹲大学数学杂志]第304期华中师范大学2004年高等代数考研试题参考解答的相关文章

[家里蹲大学数学杂志]第259期首都师范大学2013年高等代数考研试题参考解答

1 ($15'$) 求出次数最低的首项系数为 $1$ 的实系数多项式 $f(x)$ 使 $$\bex f(0)=7,\quad f(1)=14,\quad f(2)=35,\quad f(3)=76. \eex$$ 解答: 设 $ f(x)=x^4+a_3x^3+a_2x^2+a_1x+a_0, $ 则由题意, $$\bex \sedd{\ba{rrrrrrrrrrl} a_0&&&&&&&&&=&7,\\ a_0&+

[家里蹲大学数学杂志]第306期华中师范大学2005年高等代数考研试题参考解答

1. ($15'$) 设 $A$ 是数域 $\bbP$ 上的 $r\times r$ 阶矩阵, $D$ 是 $s\times s$ 阶矩阵, $\dps{M=\sex{\ba{cc} A&B\\ C&D \ea}}$, 并且 $\rank(M)=\rank(A)=r$. 证明: $D=CA^{-1}B$. 证明: 由 $\rank(A)=r$ 知 $A$ 可逆, 而又由 $$\bex \sex{\ba{cc} E&0\\ -CA^{-1}&E \ea}\sex{\ba{cc

[家里蹲大学数学杂志]第303期华中师范大学2004年数学分析考研试题参考解答

1. ($50'=10'+10'+15'+15'+15'$) 求下列极限 (1) $\dps{\lim_{x\to 0}(\cos x)^\frac{1}{\sin^2x}}$. (2) $\dps{\vlm{n}\sqrt[n]{1+\frac{1}{2}+\frac{1}{3} +\cdots+\frac{1}{n}}}$. (3) $\dps{\lim_{x\to +\infty} x^\frac{7}{4}\sex{\sqrt[4]{x+1}+\sqrt[4]{x-1}-2\sqrt[4

[家里蹲大学数学杂志]第308期华中师范大学2006年高等代数考研试题参考解答

1. ($14'$) 计算 $n$ 级行列式 $$\bex D_n=\sev{\ba{ccccc} x_1+a_1^2&a_1a_2&a_1a_3&\cdots&a_1a_n\\ a_2a_1&x_2+a_2^2&a_2a_3&\cdots&a_2a_n\\ a_3a_1&a_3a_2&x_3+a_3^2&\cdots&a_3a_n\\ \vdots&\vdots&\vdots&\ddo

[家里蹲大学数学杂志]第260期华南师范大学2013年数学分析考研试题参考解答

1已给出一个函数的表达式 $F(x)$, 其为 $f(x)$ 的原函数, 求 $\dps{\int xf(x)\rd x}$. 解答: $$\beex \bea \int xf'(x)\rd x &=\int x\rd f(x)\\ &=xf(x)-\int f(x)\rd x\\ &=xF'(x)-F(x). \eea \eeex$$ 2已知 $$\bex \sum_{i=1}^{2k}(-1)^{i-1}a_i=0. \eex$$ 试证: $$\bex \ls{n}\sum_{

[家里蹲大学数学杂志]第258期首都师范大学2013年数学分析考研试题参考解答

1 ($3\times 5'=15'$) 求下列极限: $$\bex \lim_{x\to 0^+}\sex{\frac{\sin x}{x}}^\frac{1}{x^2};\quad \ls{n}\frac{3^n}{n!};\quad \lim_{x\to 0}\frac{\tan x-\sin x}{\sin x^3}. \eex$$ 解答: $$\beex \bea \lim_{x\to 0^+}\sex{\frac{\sin x}{x}}^\frac{1}{x^2} &=\lim_{x

[家里蹲大学数学杂志]第247期华南理工大学2013年高等代数考研试题参考解答

1 ($15'$) 设 $\bbP$ 是一个数域, $f(x),g(x)\in \bbP[x]$, 且 $\p (g(x))\geq 1$. 证明: 存在唯一的多项式序列 $f_0(x),f_1(x),\cdots,f_r(x)$, 使得对 $0\leq i\leq r$ 有 $\p (f_i(x))<\p (g(x))$ 或 $f_i(x)=0$, 且 $$\bex f(x)=\sum_{i=0}^r f_i(x)g^i(x). \eex$$ 证明: 由带余除法, $$\beex \bea f

[家里蹲大学数学杂志]第305期华中师范大学2005年数学分析考研试题参考解答

1. ($45'=10'+10'+10'+15'$) 求下列极限或指定函数的值: (1) 求 $\dps{\vlm{n}\frac{1!+2!+\cdots+n!}{n!}}$; (2) 求 $\dps{\vlm{n}\sqrt[n]{\frac{1}{2}\cdot \frac{3}{4}\cdots \frac{5}{6}\cdots \frac{2n-1}{2n}}}$; (3) 求 $\dps{\lim_{x\to +\infty}\sez{\sex{x^3-x^2+\frac{x}{2

[家里蹲大学数学杂志]第300期华中师范大学2001年数学分析考研试题参考解答

1. ($24'$) 求下列极限 (要有主要计算步骤) (1) $\dps{\vlm{n} \sex{\cfrac{1}{n^2+n+1}+\cfrac{2}{n^2+n+2}+\cfrac{3}{n^2+n+3}+ \cdots+\cfrac{n}{n^2+n+n}}}$; (2) $\dps{\lim_{n\to\infty}\cfrac{n^n}{3^n\cdot n!}}$; (3) $\dps{\lim_{x\to 0} \cfrac{e^x-1-x}{\sqrt{1-x}-\cos\