使用 profile 进行python代码性能分析

定位程序性能瓶颈

对代码优化的前提是需要了解性能瓶颈在什么地方,程序运行的主要时间是消耗在哪里,对于比较复杂的代码可以借助一些工具来定位,python 内置了丰富的性能分析工具,如 profile,cProfile 与 hotshot 等。其中 Profiler 是 python 自带的一组程序,能够描述程序运行时候的性能,并提供各种统计帮助用户定位程序的性能瓶颈。Python 标准模块提供三种 profilers:cProfile,profile 以及 hotshot。

profile 的使用非常简单,只需要在使用之前进行 import 即可。具体实例如下:

 使用 profile 进行性能分析

1 import profile
2 def profileTest():
3    Total =1;
4    for i in range(10):
5        Total=Total*(i+1)
6        print Total
7    return Total
8 if __name__ == "__main__":
9    profile.run("profileTest()") 

程序的运行结果如下:

图 1. 性能分析结果

其中输出每列的具体解释如下:

●ncalls:表示函数调用的次数;

●tottime:表示指定函数的总的运行时间,除掉函数中调用子函数的运行时间;

●percall:(第一个 percall)等于 tottime/ncalls;

●cumtime:表示该函数及其所有子函数的调用运行的时间,即函数开始调用到返回的时间;

●percall:(第二个 percall)即函数运行一次的平均时间,等于 cumtime/ncalls;

●filename:lineno(function):每个函数调用的具体信息;

如果需要将输出以日志的形式保存,只需要在调用的时候加入另外一个参数。如 profile.run(“profileTest()”,”testprof”)。

时间: 2024-10-01 00:22:56

使用 profile 进行python代码性能分析的相关文章

代码性能分析

代码性能优化 优化是对代码进行等价变换,使得变换后的代码运行结果与变换前的代码运行结果相同,但执行速度加快或存储开销减少. 代码性能优化是一门复杂的学问. 根据 80/20 原则,实现程序的重构.优化.扩展以及文档相关的事情通常需要消耗80% 的工作量. 在满足正确性.可靠性.健壮性.可读性等质量因素的前提下,设法提高程序的效率 以提高程序的全局效率为主,提高局部效率为辅 在优化程序效率时,应先找出限制效率的“瓶颈” 先优化数据结构和算法,再优化执行代码 时间效率和空间效率可能是对立的,应当分析

Python 代码性能优化技巧(转)

原文:Python 代码性能优化技巧 Python 代码优化常见技巧 代码优化能够让程序运行更快,它是在不改变程序运行结果的情况下使得程序的运行效率更高,根据 80/20 原则,实现程序的重构.优化.扩展以及文档相关的事情通常需要消耗 80% 的工作量.优化通常包含两方面的内容:减小代码的体积,提高代码的运行效率. 改进算法,选择合适的数据结构 一个良好的算法能够对性能起到关键作用,因此性能改进的首要点是对算法的改进.在算法的时间复杂度排序上依次是: O(1) -> O(lg n) -> O(

Visual Studio代码性能分析工具

AMD CodeXL 2011年发布的AMD CodeAnalyst Performance Analyzer 现在已经被AMD CodeXL所替代.AMD CodeXL的主要目的是帮助开发者更好利用CPU, GPU和APU的计算性能,具有强大的GPU调试.CPU和GPU代码分析.及静态的OpenCL内核性能分析等能力. AMD提供了支持Windows 7.Windows 8和Linux系统的单机版CodeXL分析工具.在Visual Studio 2010,2012和2013上也有AMD Co

11个Visual Studio代码性能分析工具

软件开发中的性能优化对程序员来说是一个非常重要的问题.一个小问题可能成为一个大的系统的瓶颈.但是对于程序员来说,通过自身去优化代码是十分困难的.幸运的是,有一些非常棒的工具可以帮助程序员进行代码分析和性能测试,从而大大简化程序员进行代码性能优化的过程.MSDN杂志2011年7月份曾发布主题为“.NET代码分析工具和技术”的那一期,让广大程序员收获颇丰.四年过去之后,这些工具又进一步做出了很多改进,同时也出现了更多的选择.本文对当前主流的一些Visual Studio代码性能分析工具进行简单的梳理

11 个 Visual Studio 代码性能分析工具

软件开发中的性能优化对程序猿来说是一个很重要的问题. 一个小问题可能成为一个大的系统的瓶颈. 可是对于程序猿来说.通过自身去优化代码是十分困难的.幸运的是.有一些很棒的工具能够帮助程序猿进行代码分析和性能測试,从而大大简化程序猿进行代码性能优化的过程.MSDN 杂志 2011 年 7 月份曾公布主题为".NET 代码分析工具和技术"的那一期.让广大程序猿收获颇丰.四年过去之后,这些工具又进一步做出了非常多改进,同一时候也出现了很多其它的选择.很多其它应用代码安全工具请点击:http:/

[转] Python 代码性能优化技巧

选择了脚本语言就要忍受其速度,这句话在某种程度上说明了 python 作为脚本的一个不足之处,那就是执行效率和性能不够理想,特别是在 performance 较差的机器上,因此有必要进行一定的代码优化来提高程序的执行效率.如何进行 Python 性能优化,是本文探讨的主要问题.本文会涉及常见的代码优化方法,性能优化工具的使用以及如何诊断代码的性能瓶颈等内容,希望可以给 Python 开发人员一定的参考. Python 代码优化常见技巧 代码优化能够让程序运行更快,它是在不改变程序运行结果的情况下

Python 代码性能优化技巧

10 个 Python IDE 和代码编辑器 1. Vim 2. Eclipse with PyDev 3. Sublime Text 4. Emacs 5. Komodo Edit 6. PyCharm 7. Wing 8. PyScripter 9. The Eric Python IDE 10. Interactive Editor for Python 获取帮助 你可以很容易的通过Python解释器获取帮助.如果你想知道一个对象(object)是如何工作的,那么你所需要做的就是调用hel

Python脚本性能分析

来自:http://www.cnblogs.com/btchenguang/archive/2012/02/03/2337112.html def foo(): sum = 0 for i in range(10000): sum += i sumA = bar() sumB = bar() return sum def bar(): sum = 0 for i in range(100000): sum += i return sum if __name__ == "__main__"

朴素贝叶斯算法简介及python代码实现分析

概念: 贝叶斯定理:贝叶斯理论是以18世纪的一位神学家托马斯.贝叶斯(Thomas Bayes)命名.通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A(发生)的条件下的概率是不一样的:然而,这两者是有确定的关系的,贝叶斯定理就是这种关系的陈述 朴素贝叶斯:朴素贝叶斯方法是基于贝叶斯定理和特征条件独立假设的分类方法.对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布:然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率(Maximum A Posterio