【BZOJ2301】Problem b(莫比乌斯反演)

题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,

且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

思路:第一题反演……

利用容斥原理将原询问拆成4个,问题就转化为:

1<=i<=trunc(a div k),1<=j<=trunc(b div k),gcd(i,j)=1的(i,j)数对个数

令f(i)表示满足gcd(x,y)=i时(x,y)的对数,F(i)表示满足i|gcd(x,y)的(x,y)的对数

显然F(i)=trunc(n div i)*trunc(m div i)

f(1)=sigma u(d)*trunc(n div d)*trunc(m div d) (1<=d<=n)

观察可得trunc(n div d)*trunc(m div d)只有2根号n个取值,且每个取值对应的u(i)是连续的一段

然后就可以记录u的前缀和来优化

From  http://m.blog.csdn.net/article/details?id=50590197

 1 //uses sysutils;
 2 const max=50000;
 3 var mu,sum,prime:array[0..max]of longint;
 4     flag:array[0..max]of longint;
 5     a,b,c,d,k,i,j,t,m,cas,v:longint;
 6     tmp:double;
 7
 8 procedure swap(var x,y:longint);
 9 var t:int64;
10 begin
11  t:=x; x:=y; y:=t;
12 end;
13
14 function clac(n,m:longint):int64;
15 var i,t1,t2,pos:longint;
16     x,y:int64;
17 begin
18  if n>m then swap(n,m);
19  clac:=0; i:=1;
20  while i<=n do
21  begin
22   x:=n div i; y:=m div i;
23   t1:=n div x;
24   t2:=m div y;
25   if t1<t2 then pos:=t1
26    else pos:=t2;
27   clac:=clac+x*y*(sum[pos]-sum[i-1]);
28   i:=pos+1;
29  end;
30 end;
31
32 begin
33  assign(input,‘bzoj2301.in‘); reset(input);
34  assign(output,‘bzoj2301.out‘); rewrite(output);
35 // tmp:=now;
36  read(cas);
37  mu[1]:=1;
38  for i:=2 to max do
39  begin
40   if flag[i]=0 then
41   begin
42    inc(m); prime[m]:=i;
43    mu[i]:=-1;
44   end;
45   j:=1;
46   while (j<=m)and(prime[j]*i<=max) do
47   begin
48    t:=prime[j]*i;
49    flag[t]:=1;
50    if i mod prime[j]=0 then
51    begin
52     mu[t]:=0;
53     break;
54    end;
55    mu[t]:=-mu[i];
56    inc(j);
57   end;
58  end;
59  for i:=1 to max do sum[i]:=sum[i-1]+mu[i];
60  for v:=1 to cas do
61  begin
62   read(a,b,c,d,k);
63   dec(a); dec(c);
64   a:=a div k; b:=b div k; c:=c div k; d:=d div k;
65   writeln(clac(b,d)-clac(b,c)-clac(a,d)+clac(a,c));
66  end;
67  //writeln((now-tmp)*86400:0:2);
68  close(input);
69  close(output);
70 end.
时间: 2024-12-18 16:11:25

【BZOJ2301】Problem b(莫比乌斯反演)的相关文章

[HAOI2011][bzoj2301] Problem b [莫比乌斯反演+容斥原理+分块前缀和优化]

题面: 传送门 有洛谷就尽量放洛谷链接呗,界面友好一点 思路: 和HDU1695比较像,但是这一回有50000组数据,直接莫比乌斯反演慢慢加的话会T 先解决一个前置问题:怎么处理a,c不是1的情况? 很简单,容斥原理搞之 我们设f(x,y)代表gcd(i,j)==e(1<=i<=x,1<=j<=y)的无序数对(i,j)的个数 那么本题答案相当于f(d,b)-f(c-1,b)-f(a-1,d)+f(a-1,c-1) 再来看反演超时的问题 我们注意到原反演过程中,f(1)==mu(i)

[BZOJ1101&amp;BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演

对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x,y中都有n这个因子就好了,也就是[a/n]*[b/n]个数对(向下取整) 然后设题中所要求的为f[n],很容易得知,F[n]=∑f[d](n|d) 莫比乌斯反演可以得到f[n]=∑μ(d/n)F[d](n|d) 这样是O(n),然而数据范围5*10^4显然不能通过 f[n]=∑μ(d/n)[a/d][b/d]

BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演

分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的,我们通常采用莫比乌斯反演 但是,时间复杂度是O(n*(n/k))的,当复杂度很坏的时候,当k=1时,退化到O(n^2),超时 然后进行分块优化,时间复杂度是O(n*sqrt(n)) #include<cstdio> #include<cstring> #include<queue

【BZOJ2301】【HAOI2011】Problem b [莫比乌斯反演]

Problem b Time Limit: 50 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个整数表示满足要求的数对(x,y)的个数. Sample Inp

【bzoj2301】[HAOI2011]Problem b 莫比乌斯反演

Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个整数表示满足要求的数对(x,y)的个数 Sample Input 22 5 1 5 11 5 1 5 2 Sample Output 143 HINT 100%的数据满足:1≤n≤50000,1≤a≤b≤50000

bzoj 2301 Problem b - 莫比乌斯反演

Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个整数表示满足要求的数对(x,y)的个数 Sample Input 22 5 1 5 11 5 1 5 2 Sample Output 143 HINT 100%的数据满足:1≤n≤50000,1≤a≤b≤50000

bzoj 2301 Problem b 莫比乌斯反演+容斥

题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数 思路:在hdu1695的基础上加上容斥,即:ans=solve(b/k,d/k)-solve((a-1)/k,d/k)-solve((c-1)/k,b/k)+solve((a-1)/k,(c-1)/k),详见代码: /********************************************************* file n

bzoj 2301: [HAOI2011]Problem b 莫比乌斯反演

2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 3679  Solved: 1648[Submit][Status][Discuss] Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Outp

Luogu P2522 [HAOI2011]Problem b 莫比乌斯反演

设$f(d)=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)==d],\\F(n)=\sum_{n|d}f(d)=\lfloor \frac{N}{n} \rfloor \lfloor \frac{M}{n} \rfloor$ 则$f(n)$ $=\sum_{n|d}\mu(\frac{n}{d})F(d)$ $=\sum_{n|d}\mu(\frac{n}{d})\lfloor \frac{N}{d} \rfloor \lfloor \frac{M}{d} \rfloor$

bzoj2301 [HAOI2011]Problem b【莫比乌斯反演 分块】

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 很好的一道题.首先把每个询问转化为4个子询问,最后的结果就是这四个子询问的记过加加减减,类似二维前缀和.那么问题转化为在1 <= x <= lmtx, 1 <= y <= lmty时gcd(x, y) == k的对数,这个问题在转化一下,转化成1 <= x <= lmtx / k,1 <= y <= lmty / k时x与y互质的对数.莫比乌斯反