【转帖】UFLDL Tutorial(the main ideas of Unsupervised Feature Learning and Deep Learning)

UFLDL Tutorial

From Ufldl

Jump to: navigation, search

Description: This tutorial will teach you the main ideas of Unsupervised Feature Learning and Deep Learning.  By working through it, you will also get to implement several feature learning/deep learning algorithms, get to see them work for yourself, and learn how to apply/adapt these ideas to new problems.

This tutorial assumes a basic knowledge of machine learning (specifically, familiarity with the ideas of supervised learning, logistic regression, gradient descent).  If you are not familiar with these ideas, we suggest you go to this Machine Learning course and complete sections II, III, IV (up to Logistic Regression) first.

Sparse Autoencoder

Vectorized implementation

Preprocessing: PCA and Whitening

Softmax Regression

Self-Taught Learning and Unsupervised Feature Learning

Building Deep Networks for Classification

Linear Decoders with Autoencoders

Working with Large Images



Note: The sections above this line are stable.  The sections below are still under construction, and may change without notice.  Feel free to browse around however, and feedback/suggestions are welcome.

Miscellaneous

Miscellaneous Topics

Advanced Topics:

Sparse Coding

ICA Style Models

Others



Material contributed by: Andrew Ng, Jiquan Ngiam, Chuan Yu Foo, Yifan Mai, Caroline Suen

时间: 2024-10-28 14:32:18

【转帖】UFLDL Tutorial(the main ideas of Unsupervised Feature Learning and Deep Learning)的相关文章

应该如何入门deep learning呢?从UFLDL开始!

抱歉,大家,这里不是要分享如何学习deep learning,而是想要记录自己学习deep learning的小历程,算是给自己的一点小动力吧,希望各位业内前辈能够多多指教! 看到有网友提到,Andrew Ng的网页教程UFLDL Tutorial是入门不错的教程,好吧,试着从这里开始吧,加油! UFLDL即Unsupervised Feature Learning and Deep Learning 发现这个网页教程居然有中文版,还是很惊喜的! 该网页课程已经稳定的章节包括: 稀疏自编码器.矢

UFLDL tutorial 代码分析

之前一直没怎么接触过代码,前段时间朋友提起了caffe.本想看看caffe怎么用,无奈自己太渣了,不会用……想起之前也没怎么接触过这方面知识,就从入门开始吧.本文代码来自UFLDL tutorial. 1.函数分析 MATLAB代码,和UFLDL Tutorial对应.代码调用minFunc求解,可以先看第二部分再看此处. minFunc : uncontrained optimizer using a line search strategy.(注:虽然此处没有表明,但方法只能求解无约束凸优化

深度学习 Deep Learning UFLDL 最新 Tutorial 学习笔记 1:Linear Regression

1 前言 Andrew Ng的UFLDL在2014年9月底更新了! 对于开始研究Deep Learning的童鞋们来说这真的是极大的好消息! 新的Tutorial相比旧的Tutorial增加了Convolutional Neural Network的内容,了解的童鞋都知道CNN在Computer Vision的重大影响.并且从新编排了内容及exercises. 新的UFLDL网址为: http://ufldl.stanford.edu/tutorial/ 2 Linear Regression

ufldl学习笔记与编程作业:Feature Extraction Using Convolution,Pooling(卷积和池化抽取特征)

ufldl出了新教程,感觉比之前的好,从基础讲起,系统清晰,又有编程实践. 在deep learning高质量群里面听一些前辈说,不必深究其他机器学习的算法,可以直接来学dl. 于是最近就开始搞这个了,教程加上matlab编程,就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 学习链接: http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution

Deep Learning五:PCA and Whitening_Exercise(斯坦福大学UFLDL深度学习教程)

前言 本文是基于Exercise:PCA and Whitening的练习. 理论知识见:UFLDL教程. 实验内容:从10张512*512自然图像中随机选取10000个12*12的图像块(patch),然后对这些patch进行99%的方差保留的PCA计算,最后对这些patch做PCA Whitening和ZCA Whitening,并进行比较. 实验步骤及结果 1.加载图像数据,得到10000个图像块为原始数据x,它是144*10000的矩阵,随机显示200个图像块,其结果如下: 2.把它的每

【转帖】【面向代码】学习 Deep Learning(四) Stacked Auto-Encoders(SAE)

今天介绍的呢是DL另一个非常重要的模型:SAE 把这个放在最后来说呢,主要是因为在UFLDL tutorial 里已经介绍得比较详细了,二来代码非常简单(在NN的基础之上) 先放一张autoencoder的基本结构: 基本意思就是一个隐藏层的神经网络,输入输出都是x,属于无监督学习 ========================================================================================== 基本代码 saesetup.m [

【转帖】【面向代码】学习 Deep Learning(一)Neural Network

最近一直在看Deep Learning,各类博客.论文看得不少 但是说实话,这样做有些疏于实现,一来呢自己的电脑也不是很好,二来呢我目前也没能力自己去写一个toolbox 只是跟着Andrew Ng的UFLDL tutorial 写了些已有框架的代码(这部分的代码见github) 后来发现了一个matlab的Deep Learning的toolbox,发现其代码很简单,感觉比较适合用来学习算法 再一个就是matlab的实现可以省略掉很多数据结构的代码,使算法思路非常清晰 所以我想在解读这个too

Deep Learning 十_深度学习UFLDL教程:Convolution and Pooling_exercise(斯坦福大学深度学习教程)

前言 理论知识:UFLDL教程和http://www.cnblogs.com/tornadomeet/archive/2013/04/09/3009830.html 实验环境:win7, matlab2015b,16G内存,2T机械硬盘 实验内容:Exercise:Convolution and Pooling.从2000张64*64的RGB图片(它是the STL10 Dataset的一个子集)中提取特征作为训练数据集,训练softmax分类器,然后从3200张64*64的RGB图片(它是th

Deep Learning Tutorial - Classifying MNIST digits using Logistic Regression

Deep Learning Tutorial 由 Montreal大学的LISA实验室所作,基于Theano的深度学习材料.Theano是一个python库,使得写深度模型更容易些,也可以在GPU上训练深度模型.所以首先得了解python和numpy.其次,阅读Theano basic tutorial. Deep Learning Tutorial 包括: 监督学习算法: Logistic Regression - using Theano for something simple Multi