青蛙的约会---poj1061(扩展欧几里德)

题目链接:http://poj.org/problem?id=1061

就是找到满足 (X+mt)-(Y+nt) = Lk 的 t 和 k 即可

上式可化简为 (n-m)t + Lk = X-Y;满足ax+by=c的形式 所以我们可以用扩展欧几里德求t和k;

 

 由于上式有解当且仅当 c % gcd(a, b) = 0;

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
#include <vector>
#include <algorithm>
#include <map>
#include <queue>
#include <stack>
#include <math.h>

using namespace std;

#define met(a, b) memset(a, b, sizeof(a))
#define N 10053
#define INF 0x3f3f3f3f
const int MOD = 1e9+7;

typedef long long LL;

LL gcd(LL a, LL b)
{
    return b == 0 ? a : gcd(b, a%b);
}

void ex_gcd(LL a, LL b, LL &x, LL &y)
{
    if(b == 0)
    {
        x = 1;
        y = 0;
        return ;
    }
    ex_gcd(b, a%b, x, y);
    LL t = x;
    x = y;
    y = t - a/b*y;
}

int main()
{
    LL X, Y, L, n, m;
    while(scanf("%lld %lld %lld %lld %lld", &X, &Y, &m, &n, &L) != EOF)
    {
        LL a, b, x, y, c;

        a = n-m, b = L, c = X-Y;

        LL r = gcd(a, b);

        if(c%r)
        {
            puts("Impossible");
            continue;
        }

        a = a/r;
        b = b/r;
        c = c/r;
        ///之所以让他们都除以r是为了让ab互质,然后结果就相当于是x和y的c倍;

        ex_gcd(a, b, x, y);///此时的a和b互质,求得就是ax+by=1;的解最终的解要*c;

        x = x*c;

        x = x % b;///要求的是最小的解,所以要对b求余;

        while(x <= 0)
        {
            x += b;
        }
        printf("%lld\n", x);
    }
    return 0;
}

时间: 2024-10-25 11:36:45

青蛙的约会---poj1061(扩展欧几里德)的相关文章

POJ-1061 青蛙的约会-数论扩展欧几里德算法入门及推导

Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面. 我们把这

POJ 1061青蛙的约会(扩展欧几里德)

对欧几里德不太熟悉,参考了网上的一些讲解又学习了一下 利用扩展欧几里德算法求线性方程的一般过程:a*x + b*y = m 令a1 = a/gcd(a,b) b1 = b/gcd(a,b) m1 = m/gcd(a,b) a*x + b*y = m两边同除以m1a*x/m1 + b*y/m1 = m/m1 = gcd(a,b)设x1 = x/m1 ,y1 = y/m1 则原式变为a*x1 + b*y1 = gcd(a,b)若求出这个方程中的x1,y1,那么x = x1*m1, y = y1*m1

POJ1061 青蛙的约会 (扩展欧几里德)

本文出自:http://blog.csdn.net/svitter 题意:青蛙绕圈跳, 初始位置X,Y,速度M,N,方向相反,L为模.最后能否相遇?相遇时间是什么? 本题目为扩展欧几里德,扩展欧几里德介绍: 关于扩展欧几里德方程 ax + by = c (1) 可以用来求是否有解.即是否存在c满足这个方程. exgcd(a, b, x, y)是用来求ax + by = gcd(a, b)中x的值和y的值的.如果仅仅只是判断(1)是否有解,直接看gcd(a, b)能否整除c即可. 然后开始分析本题

POJ 1061 青蛙的约会 (扩展欧几里德)

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面. 我们把这两只青蛙分别叫做青蛙A和

青蛙的约会(裸扩展欧几里德)

青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 99567   Accepted: 18976 Description 两 只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它 们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,

POJ 1061 青蛙的约会(扩展欧几里德)

题目链接:http://poj.org/problem?id=1061 Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被

[zjoi]青蛙的约会_扩展欧几里德

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝着对方那里跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面.我们把这两只青蛙分别叫做青

poj1061青蛙的约会(扩展欧几里得)

题目链接: 啊哈哈,点我点我 这道题是扩展欧几里得问题...哎,数学太弱了,看了半天才看懂.... 如果要相遇的话,则(n-m)*T+p*c=x-y成立,那么进行代换得到a*x+b*y=c,那么就转换成小白上面讲的了,所以用扩展欧几里得算法求得一组解,那么最后得到解的通式为x=x0+k*b/gcd(a,b),那么直接另右式子等于0及可..还有就是没有解的情况就是c%gcd(a,b)不等于0,那么就没有整数解...那么这个问题就得到了解决.... 题目: 青蛙的约会 Time Limit: 100

POJ - 1061 青蛙的约会 (扩展欧几里得算法)

Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面. 我们把这

poj 1061 青蛙的约会(拓展欧几里德)

Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面. 我们把这