bzoj2299[HAOI2011]向量

bzoj2299[HAOI2011]向量

题意:

有(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问能否拼出另一个向量(x,y)。

题解:

裴蜀定理(我不会)(实际上是与解同余方程的知识相关的)。题目可以转化为用(0,2a)、(2a,0)、(0,2b)、(2b,0)拼成(x,y)、(x+a,y+b)、(x+b,y+a)、(x+a+b,y+a+b)。这样就可以列方程了。题目要求判断方程是否有解,只要求出2a、2b的gcd,然后判断目标两个数能否整除这个gcd即可。

代码:

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <algorithm>
 4 using namespace std;
 5
 6 long long gcd(long long a,long long b){return b==0?a:gcd(b,a%b);}
 7 inline bool check(long long x,long long y,long long z){return x%z==0&&y%z==0;}
 8 int main(){
 9     int t; scanf("%d",&t);
10     while(t--){
11         long long a,b,x,y; scanf("%lld%lld%lld%lld",&a,&b,&x,&y);
12         long long c=gcd(2*a,2*b);
13         if(check(x,y,c)||check(x+a,y+b,c)||check(x+b,y+a,c)||check(x+a+b,y+a+b,c))puts("Y");else puts("N");
14     }
15     return 0;
16 }

20160418

时间: 2024-11-08 19:21:26

bzoj2299[HAOI2011]向量的相关文章

裴蜀定理 BZOJ2299[HAOI2011] 向量

2299: [HAOI2011]向量 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1362  Solved: 632[Submit][Status][Discuss] Description 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y). 说明:这里的拼就是使得你选出的向量之和为(x,y)

【BZOJ-2299】向量 裴蜀定理 + 最大公约数

2299: [HAOI2011]向量 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1118  Solved: 488[Submit][Status][Discuss] Description 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y). 说明:这里的拼就是使得你选出的向量之和为(x,y)

bzoj 2299 [HAOI2011]向量 裴蜀定理

bzoj 2299 [HAOI2011]向量 裴蜀定理 题意: 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y). 限制: -2*1e9 <= a,b,x,y <= 2*1e9 思路: 题目的操作可以化为: 1. x +- 2a; 2. y +- 2a; 3. x +- 2b; 4. y +- 2b; 5. x + a && y

【BZOJ 2299】 2299: [HAOI2011]向量 (乱搞)

2299: [HAOI2011]向量 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1255  Solved: 575 Description 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y). 说明:这里的拼就是使得你选出的向量之和为(x,y) Input 第一行数组组数t,(t<=50000)

【HAOI2011】【BZOJ2299】向量

Description 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y). 说明:这里的拼就是使得你选出的向量之和为(x,y) Input 第一行数组组数t,(t<=50000) 接下来t行每行四个整数a,b,x,y (-2*109<=a,b,x,y<=2*109) Output t行每行为Y或者为N,分别表示可以拼出来,不能拼出来 Sa

[HAOI2011]向量

题目描述 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y). 说明:这里的拼就是使得你选出的向量之和为(x,y) 输入输出格式 输入格式: 第一行数组组数t,(t<=50000) 接下来t行每行四个整数a,b,x,y (-2*10^9<=a,b,x,y<=2*10^9) 输出格式: t行每行为Y或者为N,分别表示可以拼出来,不能拼出来 输

P2520 [HAOI2011]向量

挺喜欢这个大佬的解题:https://www.cnblogs.com/five20/p/8427795.html    这篇文章也是借鉴大佬的博客.不过还是希望有别的补充. 题意:给你坐标(x, y)然后产生(x,y)(-x,y)(x,-y)(-x,-y)(y,x) (-y,x) (y,-x) (-y,-x)让这八个坐标任意组合,问是否能配成(a, b)坐标. 然后,其实(x, y)和(-x,-y)提公因式化为同一项 其他同理 我们先证明一个东西为后面的证明打下基础! 还可以说明 h1,h3具有

约数相关

约数 约数简介 定义: 若整数 n 除以整数 d 的余数为 0,即 d 能整除 n, 则称 d 是 n,的约数,n 是 d 的倍数,记为 d|n 在算术基本定理中 \(N\)可被分解成下面这个样子 \[N=\prod_{i=1}^m p_i^ {c_i}, \ p_1<p_2<-<p_m , \ c_i ∈ N^*\] 那么\(N\)的正约数个数为: \[(c_i+1)*(c_i+2)*-(c_m+1)=\prod_{i=1}^{m}(c^i+1)\] \(N\)的所有正约数和为: \[

【HAOI2011】向量

题目描述: 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y). 说明:这里的拼就是使得你选出的向量之和为(x,y) 输入格式: 第一行数组组数t,(t<=50000) 接下来t行每行四个整数a,b,x,y (-2*10^9<=a,b,x,y<=2*10^9) 输出格式: t行每行为Y或者为N,分别表示可以拼出来,不能拼出来 分析: 我们看