JAVA基础—泛型小结

概念:

泛型是Java SE 1.5的新特性,泛型的本质是参数化类型,也就是说所操作的数据类型被指定为一个参数。这种参数类型可以用在类、接口和方法的创建中,分别称为泛型类、泛型接口、泛型方法。 Java语言引入泛型的好处是安全简单。

泛型的常用字符代表意思:

? 表示不确定的java类型。

T  表示java类型。

K V 分别代表java键值中的Key Value。

E 代表Element。

下面转载于cnblog上一个写的很好的例子

真的很好,我写了半天,当看到他这个后,立即删除~

普通泛型

  1. class Point<T>{       // 此处可以随便写标识符号,T是type的简称
  2. private T var ; // var的类型由T指定,即:由外部指定
  3. public T getVar(){  // 返回值的类型由外部决定
  4. return var ;
  5. }
  6. public void setVar(T var){  // 设置的类型也由外部决定
  7. this.var = var ;
  8. }
  9. };
  10. public class GenericsDemo06{
  11. public static void main(String args[]){
  12. Point<String> p = new Point<String>() ; // 里面的var类型为String类型
  13. p.setVar("it") ;        // 设置字符串
  14. System.out.println(p.getVar().length()) ;   // 取得字符串的长度
  15. }
  16. };
  17. ----------------------------------------------------------
  18. class Notepad<K,V>{       // 此处指定了两个泛型类型
  19. private K key ;     // 此变量的类型由外部决定
  20. private V value ;   // 此变量的类型由外部决定
  21. public K getKey(){
  22. return this.key ;
  23. }
  24. public V getValue(){
  25. return this.value ;
  26. }
  27. public void setKey(K key){
  28. this.key = key ;
  29. }
  30. public void setValue(V value){
  31. this.value = value ;
  32. }
  33. };
  34. public class GenericsDemo09{
  35. public static void main(String args[]){
  36. Notepad<String,Integer> t = null ;        // 定义两个泛型类型的对象
  37. t = new Notepad<String,Integer>() ;       // 里面的key为String,value为Integer
  38. t.setKey("汤姆") ;        // 设置第一个内容
  39. t.setValue(20) ;            // 设置第二个内容
  40. System.out.print("姓名;" + t.getKey()) ;      // 取得信息
  41. System.out.print(",年龄;" + t.getValue()) ;       // 取得信息
  42. }
  43. };

通配符

  1. class Info<T>{
  2. private T var ;     // 定义泛型变量
  3. public void setVar(T var){
  4. this.var = var ;
  5. }
  6. public T getVar(){
  7. return this.var ;
  8. }
  9. public String toString(){   // 直接打印
  10. return this.var.toString() ;
  11. }
  12. };
  13. public class GenericsDemo14{
  14. public static void main(String args[]){
  15. Info<String> i = new Info<String>() ;       // 使用String为泛型类型
  16. i.setVar("it") ;                            // 设置内容
  17. fun(i) ;
  18. }
  19. public static void fun(Info<?> temp){     // 可以接收任意的泛型对象
  20. System.out.println("内容:" + temp) ;
  21. }
  22. };

受限泛型

  1. class Info<T>{
  2. private T var ;     // 定义泛型变量
  3. public void setVar(T var){
  4. this.var = var ;
  5. }
  6. public T getVar(){
  7. return this.var ;
  8. }
  9. public String toString(){   // 直接打印
  10. return this.var.toString() ;
  11. }
  12. };
  13. public class GenericsDemo17{
  14. public static void main(String args[]){
  15. Info<Integer> i1 = new Info<Integer>() ;        // 声明Integer的泛型对象
  16. Info<Float> i2 = new Info<Float>() ;            // 声明Float的泛型对象
  17. i1.setVar(30) ;                                 // 设置整数,自动装箱
  18. i2.setVar(30.1f) ;                              // 设置小数,自动装箱
  19. fun(i1) ;
  20. fun(i2) ;
  21. }
  22. public static void fun(Info<? extends Number> temp){  // 只能接收Number及其Number的子类
  23. System.out.print(temp + "、") ;
  24. }
  25. };
  26. ----------------------------------------------------------
  27. class Info<T>{
  28. private T var ;     // 定义泛型变量
  29. public void setVar(T var){
  30. this.var = var ;
  31. }
  32. public T getVar(){
  33. return this.var ;
  34. }
  35. public String toString(){   // 直接打印
  36. return this.var.toString() ;
  37. }
  38. };
  39. public class GenericsDemo21{
  40. public static void main(String args[]){
  41. Info<String> i1 = new Info<String>() ;      // 声明String的泛型对象
  42. Info<Object> i2 = new Info<Object>() ;      // 声明Object的泛型对象
  43. i1.setVar("hello") ;
  44. i2.setVar(new Object()) ;
  45. fun(i1) ;
  46. fun(i2) ;
  47. }
  48. public static void fun(Info<? super String> temp){    // 只能接收String或Object类型的泛型
  49. System.out.print(temp + "、") ;
  50. }
  51. };

泛型无法向上转型

  1. class Info<T>{
  2. private T var ;     // 定义泛型变量
  3. public void setVar(T var){
  4. this.var = var ;
  5. }
  6. public T getVar(){
  7. return this.var ;
  8. }
  9. public String toString(){   // 直接打印
  10. return this.var.toString() ;
  11. }
  12. };
  13. public class GenericsDemo23{
  14. public static void main(String args[]){
  15. Info<String> i1 = new Info<String>() ;      // 泛型类型为String
  16. Info<Object> i2 = null ;
  17. i2 = i1 ;                               //这句会出错 incompatible types
  18. }
  19. };

泛型接口

  1. interface Info<T>{        // 在接口上定义泛型
  2. public T getVar() ; // 定义抽象方法,抽象方法的返回值就是泛型类型
  3. }
  4. class InfoImpl<T> implements Info<T>{   // 定义泛型接口的子类
  5. private T var ;             // 定义属性
  6. public InfoImpl(T var){     // 通过构造方法设置属性内容
  7. this.setVar(var) ;
  8. }
  9. public void setVar(T var){
  10. this.var = var ;
  11. }
  12. public T getVar(){
  13. return this.var ;
  14. }
  15. };
  16. public class GenericsDemo24{
  17. public static void main(String arsg[]){
  18. Info<String> i = null;        // 声明接口对象
  19. i = new InfoImpl<String>("汤姆") ;  // 通过子类实例化对象
  20. System.out.println("内容:" + i.getVar()) ;
  21. }
  22. };
  23. ----------------------------------------------------------
  24. interface Info<T>{        // 在接口上定义泛型
  25. public T getVar() ; // 定义抽象方法,抽象方法的返回值就是泛型类型
  26. }
  27. class InfoImpl implements Info<String>{   // 定义泛型接口的子类
  28. private String var ;                // 定义属性
  29. public InfoImpl(String var){        // 通过构造方法设置属性内容
  30. this.setVar(var) ;
  31. }
  32. public void setVar(String var){
  33. this.var = var ;
  34. }
  35. public String getVar(){
  36. return this.var ;
  37. }
  38. };
  39. public class GenericsDemo25{
  40. public static void main(String arsg[]){
  41. Info i = null;      // 声明接口对象
  42. i = new InfoImpl("汤姆") ;    // 通过子类实例化对象
  43. System.out.println("内容:" + i.getVar()) ;
  44. }
  45. };

泛型方法

  1. class Demo{
  2. public <T> T fun(T t){            // 可以接收任意类型的数据
  3. return t ;                  // 直接把参数返回
  4. }
  5. };
  6. public class GenericsDemo26{
  7. public static void main(String args[]){
  8. Demo d = new Demo() ;   // 实例化Demo对象
  9. String str = d.fun("汤姆") ; //   传递字符串
  10. int i = d.fun(30) ;     // 传递数字,自动装箱
  11. System.out.println(str) ;   // 输出内容
  12. System.out.println(i) ;     // 输出内容
  13. }
  14. };

通过泛型方法返回泛型类型实例

  1. class Info<T extends Number>{ // 指定上限,只能是数字类型
  2. private T var ;     // 此类型由外部决定
  3. public T getVar(){
  4. return this.var ;
  5. }
  6. public void setVar(T var){
  7. this.var = var ;
  8. }
  9. public String toString(){       // 覆写Object类中的toString()方法
  10. return this.var.toString() ;
  11. }
  12. };
  13. public class GenericsDemo27{
  14. public static void main(String args[]){
  15. Info<Integer> i = fun(30) ;
  16. System.out.println(i.getVar()) ;
  17. }
  18. public static <T extends Number> Info<T> fun(T param){//方法中传入或返回的泛型类型由调用方法时所设置的参数类型决定
  19. Info<T> temp = new Info<T>() ;      // 根据传入的数据类型实例化Info
  20. temp.setVar(param) ;        // 将传递的内容设置到Info对象的var属性之中
  21. return temp ;   // 返回实例化对象
  22. }
  23. };

使用泛型统一传入的参数类型

  1. class Info<T>{    // 指定上限,只能是数字类型
  2. private T var ;     // 此类型由外部决定
  3. public T getVar(){
  4. return this.var ;
  5. }
  6. public void setVar(T var){
  7. this.var = var ;
  8. }
  9. public String toString(){       // 覆写Object类中的toString()方法
  10. return this.var.toString() ;
  11. }
  12. };
  13. public class GenericsDemo28{
  14. public static void main(String args[]){
  15. Info<String> i1 = new Info<String>() ;
  16. Info<String> i2 = new Info<String>() ;
  17. i1.setVar("HELLO") ;        // 设置内容
  18. i2.setVar("汤姆") ;       // 设置内容
  19. add(i1,i2) ;
  20. }
  21. public static <T> void add(Info<T> i1,Info<T> i2){
  22. System.out.println(i1.getVar() + " " + i2.getVar()) ;
  23. }
  24. };

泛型数组

  1. public class GenericsDemo30{
  2. public static void main(String args[]){
  3. Integer i[] = fun1(1,2,3,4,5,6) ;   // 返回泛型数组
  4. fun2(i) ;
  5. }
  6. public static <T> T[] fun1(T...arg){  // 接收可变参数
  7. return arg ;            // 返回泛型数组
  8. }
  9. public static <T> void fun2(T param[]){   // 输出
  10. System.out.print("接收泛型数组:") ;
  11. for(T t:param){
  12. System.out.print(t + "、") ;
  13. }
  14. }
  15. };

泛型的嵌套设置

  1. class Info<T,V>{      // 接收两个泛型类型
  2. private T var ;
  3. private V value ;
  4. public Info(T var,V value){
  5. this.setVar(var) ;
  6. this.setValue(value) ;
  7. }
  8. public void setVar(T var){
  9. this.var = var ;
  10. }
  11. public void setValue(V value){
  12. this.value = value ;
  13. }
  14. public T getVar(){
  15. return this.var ;
  16. }
  17. public V getValue(){
  18. return this.value ;
  19. }
  20. };
  21. class Demo<S>{
  22. private S info ;
  23. public Demo(S info){
  24. this.setInfo(info) ;
  25. }
  26. public void setInfo(S info){
  27. this.info = info ;
  28. }
  29. public S getInfo(){
  30. return this.info ;
  31. }
  32. };
  33. public class GenericsDemo31{
  34. public static void main(String args[]){
  35. Demo<Info<String,Integer>> d = null ;       // 将Info作为Demo的泛型类型
  36. Info<String,Integer> i = null ;   // Info指定两个泛型类型
  37. i = new Info<String,Integer>("汤姆",30) ;    // 实例化Info对象
  38. d = new Demo<Info<String,Integer>>(i) ; // 在Demo类中设置Info类的对象
  39. System.out.println("内容一:" + d.getInfo().getVar()) ;
  40. System.out.println("内容二:" + d.getInfo().getValue()) ;
  41. }
  42. };

泛型的擦除

因为类型擦除的问题,所以所有的泛型类型变量最后都会被替换为原始类型。这样就引起了一个问题,既然都被替换为原始类型,那么为什么我们在获取的时候,不需要进行强制类型转换呢?看下ArrayList和get方法:

public E get(int index) {
    RangeCheck(index);
    return (E) elementData[index];
}

看以看到,在return之前,会根据泛型变量进行强转。假设泛型类型变量为Date,虽然泛型信息会被擦除掉,但是会将(E) elementData[index],编译为(Date)elementData[index]。所以我们不用自己进行强转。

泛型中<? extends T>和<? super T> 差别

<? extends T>和<? super T>含有JAVA5.0的新的概念。由于它们的外表导致了很多人误解了它们的用途:

 1.<? extends T>

首先你很容易误解它为继承于T的所有类的集合,这是大错特错的。

相信能看下去你一定见过或用过List<? extends T>吧?为什么我说理解成一个集合是错呢?如果理解成一个集合那为什么不用List<T>来表示?所以<? extends T>不是一个集合,而是T的某一种子类的意思,记住是一种,单一的一种,问题来了,由于连哪一种都不确定,带来了不确定性,所以是不可能通过 add()来加入元素。你或许还觉得为什么add(T)不行?因为<? extends
T>是T的某种子类,能放入子类的容器不一定放入超类,也就是没可能放入T。

2.<? super T>

这里比较容易使用,没<? extends T>这么多限制,这里的意思是,以T类为下限的某种类,简单地说就是T类的超类。但为什么add(T)可以呢?因为能放入某一类的容器一定可以放入其子类,多态的概念。

JAVA基础—泛型小结,布布扣,bubuko.com

时间: 2024-10-06 14:11:13

JAVA基础—泛型小结的相关文章

一天一个Java基础——泛型

这学期的新课——设计模式,由我仰慕已久的老师传授,可惜思维过快,第一节就被老师挑中上去敲代码,自此在心里烙下了阴影,都是Java基础欠下的债 这学期的新课——算法设计与分析,虽老师不爱与同学互动式的讲课,但老师讲的挺好,不过由于数据结构欠缺课听的有点烧脑,都是数据结构欠下的债 这学期的新课——英语口语,虽外教老师风骚逗趣浪荡不羁爱自由,但我辈词汇量欠缺,表明淡定说yeah,但心中一万匹草泥马策马奔腾,都是英语欠下的债 1.泛型类 实体类(容器类),经常重用的类,下面是一个没有用泛型的实体类: 1

Java基础---泛型、集合框架工具类:collections和Arrays

第一讲     泛型(Generic) 一.概述 1.JDK1.5版本以后出现的新特性.用于解决安全问题,是一个类型安全机制. 2.JDK1.5的集合类希望在定义集合时,明确表明你要向集合中装入那种类型的数据,无法加入指定类型以外的数据. 3.泛型是提供给javac编译器使用的可以限定集合中的输入类型说明的集合时,会去掉“类型”信息,使程序运行效率不受影响,对参数化的泛型类型,getClass()方法的返回值和原始类型完全一样. 4.由于编译生成的字节码会去掉泛型的类型信息,只要能跳过编译器,就

java中泛型小结

一.什么是泛型? 泛型(Generic type 或者 generics)是对 Java 语言的类型系统的一种扩展,以支持创建可以按类型进行参数化的类.可以把类型参数看作是使用参数化类型时指定的类型的一个占位符,就像方法的形式参数是运行时传递的值的占位符一样. 可以在集合框架(Collection framework)中看到泛型的动机.例如,Map 类允许您向一个 Map 添加任意类的对象,即使最常见的情况是在给定映射(map)中保存某个特定类型(比如 String)的对象. 因为 Map.ge

Java基础 -- 泛型之泛型参数

泛型机制常用的参数有3个: “?”代表任意类型.如果只指定了<?>,而没有extends,则默认是允许任意类. extends关键字声明了类型的上界,表示参数化的类型可能是所指定的类型,或者是此类型的子类. super关键字声明了类型的下界,表示参数化的类型可能是所指定的类型,或者是此类型的父类型,直至Object 前提 Fruit是Apple和Orange的超类. 本章通过java代码逐一分析泛型参数的意义和区别 extends参数: [java] public void extend(Li

Java基础——泛型

转http://www.cnblogs.com/1693977889zz/p/7095460.html 一.定义 泛型(generic)是指参数化类型的能力.可以定义带泛型类型的类或方法,随后编译器会用具体的类型来替换它(泛型实例化). 使用泛型的主要优点是能够在编译时,而不是在运行时检测出错误. 它是jdk1.5之后出现的特性,为了增强安全性.我的理解是,它更像一种特殊规范,比如程序员在调用的时候,或者客户端在引入的时候,总不能鱼龙混杂,想怎样就怎样啊?!前面定义说输入一个String型的,这

java基础-泛型2

6 类型推测 java编译器能够检查所有的方法调用和对应的声明来决定类型的实参,即类型推测,类型的推测算法推测满足所有参数的最具体类型,如下例所示: //泛型方法的声明 static <T> T pick(T a1, T a2) { return a2; } //调用该方法,根据赋值对象的类型,推测泛型方法的类型参数为Serializable //String和ArrayList<T>都实现接口Serializable,后者是最具体的类型 Serializable s = pick

java基础 泛型

1.泛型集合中的元素是存在继承关系的 public class Main { public static void main(String[] args) { List<Shape> list=new ArrayList<Shape>(); list.add(new Circle()); list.add(new Rectangle()); } } class Canva { public void drawAll(List<? extends Shape> list)

Java基础—IO小结(待整理)

文件分割符:Windows中使用\ 推荐路径使用方式(反斜杠):D:\KuGou\123.jpg  (D:\\KuGou\\123.jpg) io异常的处理方式:io一定要写finally: 使用流一定要记得关闭! 创建源->选择流->操作(准备容器等)->关闭 有点类似于搬家 流的本质是数据传输一 .IO流的分类 A.根据处理数据类型的不同分为:字符流和字节流 B.根据数据流向不同分为:输入流和输出流 C.按功能分:节点流(一线的,离源最近的)和处理流 二.字节流与字符流 输入流与输出

java 基础知识小结

1. java 有三个求整的函数 math.floor ()  (floor 是地板的意思)  向下求整 math.ceil ()  (ceil 是天花板的意思 ) 向上求整 math.round()  (round有四舍五入的意思)四舍五入 public class A{ public static void main(String[] args){ float f =1.1f; double d = 2.9; System.out.println(Math.ceil(f)); System.