计算$$\oint\limits_{|z|=1}\frac{1}{z+2}dz,$$并由此证明:
$$\int_{0}^{\pi}\frac{1+2\cos \theta}{5+4\cos\theta}d\theta =0$$
证:由$Cauchy-Goursat$基本定理:$$\oint\limits_{|z|=1}\frac{1}{z+1}dx=0.$$
又因为:$$\oint\limits_{|z|=1}\frac1{z+1}dz$$
$$=\int_{0}^{2\pi}\frac{ie^{i\theta}}{e^{i\theta}+2}d\theta$$
$$=-\int_{0}^{2\pi}\frac{\sin \theta}{5+4\cos\theta}d\theta+i\int_{0}^{2\pi}\frac{1+2\cos\theta}{5+4\cos\theta}d\theta$$
显然:$$\int_0^{2\pi}\frac{1+2\cos\theta}{5+4\cos\theta}d\theta=0$$
令$\theta-\pi=t$
可得:$$\int_0^{2\pi}\frac{1+2\cos\theta}{5+4\cos\theta}d\theta=2\int_0^{\pi}\frac{1+2\cos\theta}{5+4\cos\theta}d\theta=0$$
所以:$$\int_0^{\pi}\frac{1+2\cos\theta}{5+4\cos\theta}d\theta=0$$
时间: 2024-12-07 20:16:00