分库分表之后,id 主键如何处理

基于数据库的实现方案

数据库自增 id

这个就是说你的系统里每次得到一个 id,都是往一个库的一个表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个 id。拿到这个 id 之后再往对应的分库分表里去写入。

这个方案的好处就是方便简单,谁都会用;缺点就是单库生成自增 id,要是高并发的话,就会有瓶颈的;如果你硬是要改进一下,那么就专门开一个服务出来,这个服务每次就拿到当前 id 最大值,然后自己递增几个 id,一次性返回一批 id,然后再把当前最大 id 值修改成递增几个 id 之后的一个值;但是无论如何都是基于单个数据库。

适合的场景:你分库分表就俩原因,要不就是单库并发太高,要不就是单库数据量太大;除非是你并发不高,但是数据量太大导致的分库分表扩容,你可以用这个方案,因为可能每秒最高并发最多就几百,那么就走单独的一个库和表生成自增主键即可。

设置数据库 sequence 或者表自增字段步长

可以通过设置数据库 sequence 或者表的自增字段步长来进行水平伸缩。

比如说,现在有 8 个服务节点,每个服务节点使用一个 sequence 功能来产生 ID,每个 sequence 的起始 ID 不同,并且依次递增,步长都是 8。

适合的场景:在用户防止产生的 ID 重复时,这种方案实现起来比较简单,也能达到性能目标。但是服务节点固定,步长也固定,将来如果还要增加服务节点,就不好搞了。

UUID

好处就是本地生成,不要基于数据库来了;不好之处就是,UUID 太长了、占用空间大,作为主键性能太差了;更重要的是,UUID 不具有有序性,会导致 B+ 树索引在写的时候有过多的随机写操作(连续的 ID 可以产生部分顺序写),还有,由于在写的时候不能产生有顺序的 append 操作,而需要进行 insert 操作,将会读取整个 B+ 树节点到内存,在插入这条记录后会将整个节点写回磁盘,这种操作在记录占用空间比较大的情况下,性能下降明显。

适合的场景:如果你是要随机生成个什么文件名、编号之类的,你可以用 UUID,但是作为主键是不能用 UUID 的。

UUID.randomUUID().toString().replace(“-”, “”) -> sfsdf23423rr234sfdaf

获取系统当前时间

这个就是获取当前时间即可,但是问题是,并发很高的时候,比如一秒并发几千,会有重复的情况,这个是肯定不合适的。基本就不用考虑了。

适合的场景:一般如果用这个方案,是将当前时间跟很多其他的业务字段拼接起来,作为一个 id,如果业务上你觉得可以接受,那么也是可以的。你可以将别的业务字段值跟当前时间拼接起来,组成一个全局唯一的编号。

snowflake 算法

snowflake 算法是 twitter 开源的分布式 id 生成算法,采用 Scala 语言实现,是把一个 64 位的 long 型的 id,1 个 bit 是不用的,用其中的 41 bit 作为毫秒数,用 10 bit 作为工作机器 id,12 bit 作为序列号。

  • 1 bit:不用,为啥呢?因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。
  • 41 bit:表示的是时间戳,单位是毫秒。41 bit 可以表示的数字多达 2^41 - 1,也就是可以标识 2^41 - 1 个毫秒值,换算成年就是表示69年的时间。
  • 10 bit:记录工作机器 id,代表的是这个服务最多可以部署在 2^10台机器上哪,也就是1024台机器。但是 10 bit 里 5 个 bit 代表机房 id,5 个 bit 代表机器 id。意思就是最多代表 2^5个机房(32个机房),每个机房里可以代表 2^5 个机器(32台机器)。
  • 12 bit:这个是用来记录同一个毫秒内产生的不同 id,12 bit 可以代表的最大正整数是 2^12 - 1 = 4096,也就是说可以用这个 12 bit 代表的数字来区分同一个毫秒内的 4096 个不同的 id。
0 | 0001100 10100010 10111110 10001001 01011100 00 | 10001 | 1 1001 | 0000 00000000
public class IdWorker {

    private long workerId;
    private long datacenterId;
    private long sequence;

    public IdWorker(long workerId, long datacenterId, long sequence) {
        // sanity check for workerId
        // 这儿不就检查了一下,要求就是你传递进来的机房id和机器id不能超过32,不能小于0
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(
                    String.format("worker Id can‘t be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(
                    String.format("datacenter Id can‘t be greater than %d or less than 0", maxDatacenterId));
        }
        System.out.printf(
                "worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
                timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);

        this.workerId = workerId;
        this.datacenterId = datacenterId;
        this.sequence = sequence;
    }

    private long twepoch = 1288834974657L;

    private long workerIdBits = 5L;
    private long datacenterIdBits = 5L;

    // 这个是二进制运算,就是 5 bit最多只能有31个数字,也就是说机器id最多只能是32以内
    private long maxWorkerId = -1L ^ (-1L << workerIdBits);

    // 这个是一个意思,就是 5 bit最多只能有31个数字,机房id最多只能是32以内
    private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    private long sequenceBits = 12L;

    private long workerIdShift = sequenceBits;
    private long datacenterIdShift = sequenceBits + workerIdBits;
    private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    private long sequenceMask = -1L ^ (-1L << sequenceBits);

    private long lastTimestamp = -1L;

    public long getWorkerId() {
        return workerId;
    }

    public long getDatacenterId() {
        return datacenterId;
    }

    public long getTimestamp() {
        return System.currentTimeMillis();
    }

    public synchronized long nextId() {
        // 这儿就是获取当前时间戳,单位是毫秒
        long timestamp = timeGen();

        if (timestamp < lastTimestamp) {
            System.err.printf("clock is moving backwards.  Rejecting requests until %d.", lastTimestamp);
            throw new RuntimeException(String.format(
                    "Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }

        if (lastTimestamp == timestamp) {
            // 这个意思是说一个毫秒内最多只能有4096个数字
            // 无论你传递多少进来,这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0;
        }

        // 这儿记录一下最近一次生成id的时间戳,单位是毫秒
        lastTimestamp = timestamp;

        // 这儿就是将时间戳左移,放到 41 bit那儿;
        // 将机房 id左移放到 5 bit那儿;
        // 将机器id左移放到5 bit那儿;将序号放最后12 bit;
        // 最后拼接起来成一个 64 bit的二进制数字,转换成 10 进制就是个 long 型
        return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift)
                | (workerId << workerIdShift) | sequence;
    }

    private long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }

    private long timeGen() {
        return System.currentTimeMillis();
    }

    // ---------------测试---------------
    public static void main(String[] args) {
        IdWorker worker = new IdWorker(1, 1, 1);
        for (int i = 0; i < 30; i++) {
            System.out.println(worker.nextId());
        }
    }

}

怎么说呢,大概这个意思吧,就是说 41 bit 是当前毫秒单位的一个时间戳,就这意思;然后 5 bit 是你传递进来的一个机房id(但是最大只能是 32 以内),另外 5 bit 是你传递进来的机器 id(但是最大只能是 32 以内),剩下的那个 12 bit序列号,就是如果跟你上次生成 id 的时间还在一个毫秒内,那么会把顺序给你累加,最多在 4096 个序号以内。

所以你自己利用这个工具类,自己搞一个服务,然后对每个机房的每个机器都初始化这么一个东西,刚开始这个机房的这个机器的序号就是 0。然后每次接收到一个请求,说这个机房的这个机器要生成一个 id,你就找到对应的 Worker 生成。

利用这个 snowflake 算法,你可以开发自己公司的服务,甚至对于机房 id 和机器 id,反正给你预留了 5 bit + 5 bit,你换成别的有业务含义的东西也可以的。

这个 snowflake 算法相对来说还是比较靠谱的,所以你要真是搞分布式 id 生成,如果是高并发啥的,那么用这个应该性能比较好,一般每秒几万并发的场景,也足够你用了。

原文地址:https://www.cnblogs.com/windpoplar/p/10926571.html

时间: 2024-10-22 10:19:49

分库分表之后,id 主键如何处理的相关文章

面试官:分库分表之后,id 主键如何处理?

面试题 分库分表之后,id 主键如何处理? 面试官心理分析 其实这是分库分表之后你必然要面对的一个问题,就是 id 咋生成?因为要是分成多个表之后,每个表都是从 1 开始累加,那肯定不对啊,需要一个全局唯一的 id 来支持.所以这都是你实际生产环境中必须考虑的问题. 面试题剖析 数据库自增 id 这个就是说你的系统里每次得到一个 id,都是往一个库的一个表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个 id.拿到这个 id 之后再往对应的分库分表里去写入. 这个方案的好处就是方便简

分布式中的分库分表之后,ID 主键如何处理?

面试题 分库分表之后,id 主键如何处理?(唯一性,排序等) 面试官心理分析 其实这是分库分表之后你必然要面对的一个问题,就是 id 咋生成?因为要是分成多个表之后,每个表都是从 1 开始累加,那肯定不对啊,需要一个全局唯一的 id 来支持,排序问题等.所以这都是你实际生产环境中必须考虑的问题. 面试题剖析 基于数据库的实现方案 数据库自增 id 这个就是说你的系统里每次得到一个 id,都是往一个库的一个表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个 id.拿到这个 id 之后再

分库分表之后,id 主键如何处理?

其实这是分库分表之后你必然要面对的一个问题,就是 id 咋生成?因为要是分成多个表之后,每个表都是从 1 开始累加,那肯定不对啊,需要一个全局唯一的 id 来支持.所以这都是你实际生产环境中必须考虑的问题. 基于数据库的实现方案 数据库自增 id 这个就是说你的系统里每次得到一个 id,都是往一个库的一个表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个 id.拿到这个 id 之后再往对应的分库分表里去写入. 这个方案的好处就是方便简单,谁都会用:缺点就是单库生成自增 id,要是高并

oracle迁移到mysql分库分表方案之——ogg(goldengate)

之前文章主要介绍了oracle 迁移到mysql,主要是原表原结构迁移,但是实际运维中会发现,到mysql以后需要分库和分表的拆分操作,这个时候,用ogg来做,也是很强大好用的.主要结合ogg的2个参数 参数1:filterUse a FILTER clause to select rows based on a numeric value by using basic operators or one or more Oracle GoldenGate column-conversion fu

转数据库分库分表(sharding)系列(二) 全局主键生成策略

本文将主要介绍一些常见的全局主键生成策略,然后重点介绍flickr使用的一种非常优秀的全局主键生成方案.关于分库分表(sharding)的拆分策略和实施细则,请参考该系列的前一篇文章:数据库分库分表(sharding)系列(一) 拆分实施策略和示例演示 本文原文连接: http://blog.csdn.net/bluishglc/article/details/7710738 ,转载请注明出处! 第一部分:一些常见的主键生成策略 一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键

数据库分库分表中间件 Sharding-JDBC 源码分析 —— 分布式主键

关注**微信公众号:[芋道源码]**有福利: RocketMQ / MyCAT / Sharding-JDBC 所有源码分析文章列表 RocketMQ / MyCAT / Sharding-JDBC 中文注释源码 GitHub 地址 您对于源码的疑问每条留言都将得到认真回复.甚至不知道如何读源码也可以请教噢. 新的源码解析文章实时收到通知.每周更新一篇左右. 认真的源码交流微信群. 本文主要基于 Sharding-JDBC 1.5.0 正式版 1. 概述 2.KeyGenerator 2.1 D

数据库分库分表(sharding)系列(二) 全局主键生成策略

本文将主要介绍一些常见的全局主键生成策略,然后重点介绍flickr使用的一种非常优秀的全局主键生成方案.关于分库分表(sharding)的拆分策略和实施细则,请参考该系列的前一篇文章:数据库分库分表(sharding)系列(一) 拆分实施策略和示例演示 本文原文连接: http://blog.csdn.net/bluishglc/article/details/7710738 ,转载请注明出处! 第一部分:一些常见的主键生成策略 一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键

【转】MySQL分库分表环境下全局ID生成方案

转载一篇博客,里面有很多的知识和思想值得我们去思考. —————————————————————————————————————————————————————————————————————— 在大型互联网应用中,随着用户数的增加,为了提高应用的性能,我们经常需要对数据库进行分库分表操作.在单表时代,我们可以完全依赖于数据库的自增ID来唯一标识一个用户或数据对象.但是当我们对数据库进行了分库分表后,就不能依赖于每个表的自增ID来全局唯一标识这些数据了.因此,我们需要提供一个全局唯一的ID号生成

mysql数据库单表只有一个主键自增id字段,ibatis实现id自增

mysql数据库单表只有一个主键自增id字段,ibatis实现id自增 <insert id="autoid">        insert into user_id values(null)        <selectKey resultClass="int">SELECT @@IDENTITY As id</selectKey>    </insert>