SGU495Kids and Prizes 数学期望

题意:

有n个奖品,m个人排队来选礼物,对于每个人,他打开的盒子,可能有礼物,也有可能已经被之前的人取走了,然后把盒子放回原处。为最后m个人取走礼物的期望。

题解:

本道题与之前的一些期望 DP 题目相比不同的是我们知道初始状态,却不知道终止状态. (第一个人一定会拿走一个礼物,而最后一个人不一定).

我们考虑顺推.

设 $F[i]$ 表示前 $i$ 个人拿完礼物的期望个数.
分类讨论一下,考虑第 $i$ 个人的情况.
$1.$ 没礼物可拿,期望为 $0$.
$2.$ 有礼物拿, 概率为 $\frac{n-F[i-1]}{n}$ , 权值为 $1$.
故 $F[i]=\frac{n-F[i-1]}{n}+F[i-1]$.
递推求解即可.
似乎逆推也可以做,不过好像有点不好想......
代码挺短的,就不贴了......

  

原文地址:https://www.cnblogs.com/guangheli/p/10986646.html

时间: 2024-10-11 10:29:06

SGU495Kids and Prizes 数学期望的相关文章

SGU 495. Kids and Prizes( 数学期望 )

题意: N个礼品箱, 每个礼品箱内的礼品只有第一个抽到的人能拿到. M个小孩每个人依次随机抽取一个,  求送出礼品数量的期望值. 1 ≤ N, M ≤ 100, 000 挺水的说..设f(x)表示前x个人都选择完成后礼品剩下数的期望值( f(0) = N ), 那么f(x) = f(x - 1) - f(x - 1) / N = f(x - 1) * (N - 1) / N (显然). 那么答案就是等于 N - N * [(N - 1) / N]^M. 后面部分可以用快速幂优化.时间复杂度O(l

数学期望

数学期望又称均值(加权均值),例如 甲8环,9环,10环的概率分别为0.1,0.8,0.1,即权重,则加权均值为8*0.1+9*0.8+10*0.1=9:同理乙的加权均值为8.95 则甲的平均成绩优于乙 对于离散型随机变量 连续型随机变量

数学1——概率与数学期望

1.什么是数学期望? 数学期望亦称期望.期望值等.在概率论和统计学中,一个离散型随机变量的期望值是试验中每一次可能出现的结果的概率乘以其结果的总和. 这是什么意思呢?假如我们来玩一个游戏,一共52张牌,其中有4个A.我们1元钱赌一把,如果你抽中了A,那么我给你10元钱,否则你的1元钱就输给我了.在这个游戏中,抽中的概率是$\frac{1}{13} ( \frac{4}{52} ) $,结果是赢10元钱:抽不中概率是$\frac{12}{13}$,结果是亏1元钱.那么你赢的概率,也就是期望值是$-

poj3682:数学期望,O(1)做法附推导过程

这几天一直在磨蹭这题..第一个答案很容易,但在第二个答案我无法算出来了,于是只好求助于Zayin.Zayin又求助于我们年级里面的一个研究生数学老师..而现在终于算出来了,我看了看,自己也推出来几次了,先看题:) King Arthur's Birthday Celebration Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2921 Accepted: 926 Description King Arthur is an

HDUBoard Game Dice (数学期望)

推出的公式是M^x*x/N,大概意思是M^x*x这些种可能后一定会找出一个裁判,在除以N为数学期望. 可能和数学公式还有关系. #include<stdio.h> #include<math.h> __int64 gcd(__int64 a,__int64 b){ return b == 0 ? a : gcd(b, a%b); } int main() { __int64 i,j,n,m,t,x,a,b,temp,sum; scanf("%I64d",&

HDU 4405 飞行棋上的数学期望

突然发现每次出现有关数学期望的题目都不会做,就只能找些虽然水但自己还是做不出的算数学期望的水题练练手了 题目大意: 从起点0点开始到达点n,通过每次掷色子前进,可扔出1,2,3,4,5,6这6种情况,扔到几前进几,当然对应飞行通道可以通过x直达一点y,x<y,计算到达n点或超过n 点要扔色子的次数的数学期望 从某一点 i 扔完色子可到达 i+1,i+2,i+3,i+4,i+5,i+6这6个点,令dp[i]为到达末尾的数学期望 那么到达之后6个点的数学期望是一样的,那么dp[i]=dp[i+1]*

概率论,简要数学期望(转载)

概率论(https://ruanx.pw/post/%E6%A6%82%E7%8E%87%E8%AE%BA.html) 这东西并不难学.这片博客主要介绍离散概率.连续概率.期望与微积分…… 离散型概率入门 计算方法 首先,我们来讨论一个最原始的问题:抛一个质地均匀的硬币,抛中正面的几率是多大?显然50%50%. 那么问题加深一番:抛两个质地均匀的硬币,都抛中正面的几率是多大?显然25%25%. 进一步,抛nn个硬币,全都正面朝上的几率是0.5×0.5×0.5?=0.5n0.5×0.5×0.5?=

HDU3910(数学期望题,题目难懂)

Liang Guo Sha Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 590    Accepted Submission(s): 426 Problem Description Maybe you know “San Guo Sha”, but I guess you didn’t hear the game: “Liang Gu

[sdut]2623+[sdut]2878//四五届省赛中的两道数学期望

两道数学期望的题今天一起总结上来. 1.the number of steps(第四届省赛) 1 #include <iostream> 2 #include <string.h> 3 #include <iomanip> 4 using namespace std; 5 double dp[100][100]; 6 int n; 7 double a,b,c,d,e; 8 9 int main() 10 { 11 while(cin>>n&&