过采样算法之SMOTE

SMOTE(Synthetic Minority Oversampling Technique),合成少数类过采样技术.它是基于随机过采样算法的一种改进方案,由于随机过采样采取简单复制样本的策略来增加少数类样本,这样容易产生模型过拟合的问题,即使得模型学习到的信息过于特别(Specific)而不够泛化(General),SMOTE算法的基本思想是对少数类样本进行分析并根据少数类样本人工合成新样本添加到数据集中,具体如下图所示,算法流程如下。

  • (1)对于少数类中每一个样本x,以欧氏距离为标准计算它到少数类样本集中所有样本的距离,得到其k近邻。
  • (2)根据样本不平衡比例设置一个采样比例以确定采样倍率N,对于每一个少数类样本x,从其k近邻中随机选择若干个样本,假设选择的近邻为o。
  • (3)对于每一个随机选出的近邻o,分别与原样本按照公式o(new)=o+rand(0,1)*(x-o)构建新的样本。

或者:

Smote算法的思想其实很简单,先随机选定n个少类的样本,如下图

找出初始扩展的少类样本

再找出最靠近它的m个少类样本,如下图

再任选最临近的m个少类样本中的任意一点,

在这两点上任选一点,这点就是新增的数据样本

# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from numpy import *
import matplotlib.pyplot as plt

#读数据
data = pd.read_table(‘supermarket_second_man_clothes_train.txt‘, low_memory=False)

#简单的预处理
test_date = pd.concat([data[‘label‘], data.iloc[:, 7:10]], axis=1)
test_date = test_date.dropna(how=‘any‘)

结果:

test_date.head()
Out[1]:
   label  max_date_diff  max_pay  cnt_time
0      0           23.0  43068.0        15
1      0           10.0   1899.0         2
2      0          146.0   3299.0        21
3      0           30.0  31959.0        35
4      0            3.0  24165.0        98
test_date[‘label‘][test_date[‘label‘]==0].count()/test_date[‘label‘][test_date[‘label‘]==1].count()
Out[2]: 67

label是样本类别判别标签,0:1=67:1,需要对label=1的数据进行扩充

# 筛选目标变量
aimed_date = test_date[test_date[‘label‘] == 1]
# 随机筛选少类扩充中心
index = pd.DataFrame(aimed_date.index).sample(frac=0.1, random_state=1)
index.columns = [‘id‘]
number = len(index)
# 生成array格式
aimed_date_new = aimed_date.ix[index.values.ravel(), :]

随机选取了全量少数样本的10%作为数据扩充的中心点

# 自变量标准化
sc = StandardScaler().fit(aimed_date_new)
aimed_date_new = pd.DataFrame(sc.transform(aimed_date_new))
sc1 = StandardScaler().fit(aimed_date)
aimed_date = pd.DataFrame(sc1.transform(aimed_date))

# 定义欧式距离计算
def dist(a, b):
    a = array(a)
    b = array(b)
    d = ((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2 + (a[2] - b[2]) ** 2 + (a[3] - b[3]) ** 2) ** 0.5
    return d

下面定义距离计算的方式,所有算法中,涉及到距离的地方都需要标准化去除冈量,也同时加快了计算的速度
这边采取了欧式距离的方式

# 统计所有检验距离样本个数
row_l1 = aimed_date_new.iloc[:, 0].count()
row_l2 = aimed_date.iloc[:, 0].count()
a = zeros((row_l1, row_l2))
a = pd.DataFrame(a)
# 计算距离矩阵
for i in range(row_l1):
    for j in range(row_l2):
        d = dist(aimed_date_new.iloc[i, :], aimed_date.iloc[j, :])
        a.ix[i, j] = d
b = a.T.apply(lambda x: x.min())

调用上面的计算距离的函数,形成一个距离矩阵

# 找到同类点位置
h = []
z = []
for i in range(number):
    for j in range(len(a.iloc[i, :])):
        ai = a.iloc[i, j]
        bi = b[i]
        if ai == bi:
            h.append(i)
            z.append(j)
        else:
            continue
new_point = [0, 0, 0, 0]
new_point = pd.DataFrame(new_point)
for i in range(len(h)):
    index_a = z[i]
    new = aimed_date.iloc[index_a, :]
    new_point = pd.concat([new, new_point], axis=1)

new_point = new_point.iloc[:, range(len(new_point.columns) - 1)]

再找到位置的情况下,再去原始的数据集中根据位置查找具体的数据

import random
r1 = []
for i in range(len(new_point.columns)):
    r1.append(random.uniform(0, 1))
new_point_last = []
new_point_last = pd.DataFrame(new_point_last)
# 求新点 new_x=old_x+rand()*(append_x-old_x)
for i in range(len(new_point.columns)):
    new_x = (new_point.iloc[1:4, i] - aimed_date_new.iloc[number - 1 - i, 1:4]) * r1[i] + aimed_date_new.iloc[number - 1 - i, 1:4]
    new_point_last = pd.concat([new_point_last, new_x], axis=1)
print new_point_last

最后,再根据smote的计算公式new_x=old_x+rand()*(append_x-old_x),计算出新的点即可。

smote算法的伪代码如下:

import random
from sklearn.neighbors import NearestNeighbors
import numpy as np

class Smote:
    def __init__(self,samples,N=1,k=5):
        self.n_samples,self.n_attrs=samples.shape
        self.N=N
        self.k=k
        self.samples=samples
        self.newindex=0
       # self.synthetic=np.zeros((self.n_samples*N,self.n_attrs))

    def over_sampling(self):
        N=int(self.N)
        self.synthetic = np.zeros((self.n_samples * N, self.n_attrs))
        neighbors=NearestNeighbors(n_neighbors=self.k).fit(self.samples)
        print(‘neighbors‘,neighbors)
        for i in range(len(self.samples)):
            nnarray=neighbors.kneighbors(self.samples[i].reshape(1,-1),return_distance=False)[0]
            #print nnarray
            self._populate(N,i,nnarray)
        return self.synthetic
    
    # for each minority class samples,choose N of the k nearest neighbors and generate N synthetic samples.
    def _populate(self,N,i,nnarray):
        for j in range(N):
            nn=random.randint(0,self.k-1)
            dif=self.samples[nnarray[nn]]-self.samples[i]
            gap=random.random()
            self.synthetic[self.newindex]=self.samples[i]+gap*dif
            self.newindex+=1
a=np.array([[1,2,3],[4,5,6],[2,3,1],[2,1,2],[2,3,4],[2,3,4]])
s=Smote(a,N=2)              #a为少数数据集,N为倍率,即从k-邻居中取出几个样本点
print(s.over_sampling())

SMOTE算法的缺陷

该算法主要存在两方面的问题:一是在近邻选择时,存在一定的盲目性。从上面的算法流程可以看出,在算法执行过程中,需要确定K值,即选择多少个近邻样本,这需要用户自行解决。从K值的定义可以看出,K值的下限是M值(M值为从K个近邻中随机挑选出的近邻样本的个数,且有M< K),M的大小可以根据负类样本数量、正类样本数量和数据集最后需要达到的平衡率决定。但K值的上限没有办法确定,只能根据具体的数据集去反复测试。因此如何确定K值,才能使算法达到最优这是未知的。

另外,该算法无法克服非平衡数据集的数据分布问题,容易产生分布边缘化问题。由于负类样本的分布决定了其可选择的近邻,如果一个负类样本处在负类样本集的分布边缘,则由此负类样本和相邻样本产生的“人造”样本也会处在这个边缘,且会越来越边缘化,从而模糊了正类样本和负类样本的边界,而且使边界变得越来越模糊。这种边界模糊性,虽然使数据集的平衡性得到了改善,但加大了分类算法进行分类的难度.

针对SMOTE算法的进一步改进

针对SMOTE算法存在的边缘化和盲目性等问题,很多人纷纷提出了新的改进办法,在一定程度上改进了算法的性能,但还存在许多需要解决的问题。

Han等人Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning在SMOTE算法基础上进行了改进,提出了Borderhne.SMOTE算法,解决了生成样本重叠(Overlapping)的问题该算法在运行的过程中,查找一个适当的区域,该区域可以较好地反应数据集的性质,然后在该区域内进行插值,以使新增加的“人造”样本更有效。这个适当的区域一般由经验给定,因此算法在执行的过程中有一定的局限性。

原文地址:https://www.cnblogs.com/wqbin/p/11117616.html

时间: 2024-08-01 04:25:45

过采样算法之SMOTE的相关文章

类不平衡问题与SMOTE过采样算法

在前段时间做本科毕业设计的时候,遇到了各个类别的样本量分布不均的问题——某些类别的样本数量极多,而有些类别的样本数量极少,也就是所谓的类不平衡(class-imbalance)问题. 什么是类不平衡问题 类不平衡(class-imbalance)是指在训练分类器中所使用的训练集的类别分布不均.比如说一个二分类问题,1000个训练样本,比较理想的情况是正类.负类样本的数量相差不多:而如果正类样本有900个.负类样本仅100个,就意味着存在类不平衡. 在后文中,把样本数量过少的类别称为“少数类”.

【机器学习算法-python实现】采样算法的简单实现

1.背景 采样算法是机器学习中比较常用,也比较容易实现的(出去分层采样).常用的采样算法有以下几种(来自百度知道): 一.单纯随机抽样(simple random sampling) 将调查总体全部观察单位编号,再用抽签法或随机数字表随机抽取部分观察单位组成样本. 优点:操作简单,均数.率及相应的标准误计算简单. 缺点:总体较大时,难以一一编号. 二.系统抽样(systematic sampling) 又称机械抽样.等距抽样,即先将总体的观察单位按某一顺序号分成n个部分,再从第一部分随机抽取第k

马尔科夫链与蒙特卡洛方法采样算法

马尔科夫链 http://wenku.baidu.com/link?url=26MSlOhtBMPQJz3ta2p3bM6IMdLsvvHQ2mzw8AI2GcSdZAI7Ukdf1rl4KR6VUojnuutXwU5EqHNv-V0acHQn1PlkoyYT0j7DrVRWskg_Kr7&pn=50 蒙特卡洛采样算法 http://cos.name/2013/01/lda-math-mcmc-and-gibbs-sampling/ http://imbinwang.github.io/blog

机器学习-加权采样算法简介

场景用户画像的构造中,想象一个场景:你经过辛辛苦苦抓数据,清洗数据,收集用户行为,目的就是给用户计算兴趣标签. 这时候你可能会遇到一个两难的问题:如果给用户计算出兴趣标签的权重了,那应该保留多少标签呢?保留太多的话,每次召回候选集时,计算复杂度可不低,只保留少部分吧,那真是手心手背都是肉,生怕丢弃的标签才是用户的真爱. 怎么办?这时候,你需要的一个简单的加权采样算法,每次召回时并不使用全部用户标签,而是按照权重采样一部分标签来使用,这样做的好处当然很明显: 大大减少召回时的计算复杂度:可以保留更

文本主题模型之LDA(二) LDA求解之Gibbs采样算法

本文是LDA主题模型的第二篇,读这一篇之前建议先读文本主题模型之LDA(一) LDA基础,同时由于使用了基于MCMC的Gibbs采样算法,如果你对MCMC和Gibbs采样不熟悉,建议阅读之前写的MCMC系列MCMC(四)Gibbs采样. 1. Gibbs采样算法求解LDA的思路 首先,回顾LDA的模型图如下: 在Gibbs采样算法求解LDA的方法中,我们的α,ηα,η是已知的先验输入,我们的目标是得到各个zdn,wknzdn,wkn对应的整体z? ,w? z→,w→的概率分布,即文档主题的分布和

离散采样算法---Alias采样方法

应用场景:比如一个随机事件包含4种情况,每种情况发生的概率分别为:$\frac{1}{2},\frac{1}{3},\frac{1}{12},\frac{1}{12}$,怎么产生符合这个概率的采样方法? 解决方法:Alias算法,O(1) 参考链接: [1]中文:[数学]时间复杂度O(1)的离散采样算法—— Alias method/别名采样方法 [2]英文:Darts, Dice, and Coins: Sampling from a Discrete Distribution 原文地址:ht

分层贝叶斯模型——采样算法

1. 蒙特卡洛估计 若$\theta$是要估计的参数,$y_{1},...,y_{n}$是从分布$p(y_{1},...,y_{n}|\theta) $中采样的样本值,假定我们从后验分布$p(\theta|y_{1},...,y_{n})$中独立随机采样$S$个$\theta$值,则$$ \theta^{(1)},...,\theta^{(S)}\sim^{i.i.d.}p(\theta|y_{1},...,y_{n}) $$ 那么我们就能够通过样本$\{\theta^{(1)},...,\th

RANSAC随机一致性采样算法学习体会

The RANSAC algorithm is a learning technique to estimate parameters of a model by random sampling of observed data. Given a dataset whose data elements contain both inliers and outliers, RANSAC uses the voting scheme to find the optimal fitting resul

水库采样算法

//水库采样 用较小的开销来估计一个较大的数据流 1 #include<stdio.h> 2 #include<stdlib.h> 3 #include<time.h> 4 int main() 5 { 6 int count=0; 7 long long int sum_all=0; 8 long int sum=0; 9 int i=0; 10 int data;//取数据 11 int length=500;//水库大小 12 int *set=(int *)ma