量化交易入门

量化交易,指的是利用数学模型,在金融市场中寻找稳定超额收益的投资手段。量化交易有着挖掘信息能力强,不易受主观情绪影响,下单及时、准确,风险控制严格等特点,能够获得稳健的收益。而其相对于传统主观投资,上手难度也比较大,门槛较高。入门量化交易,主要需要了解如下几方面的知识。

1.数学/统计学知识

既然说到用数学模型,那数学和统计学的知识是必不可少的。由于国内金融市场尚不完备,一些衍生品交易受到限制,所以相较国外市场,能用到的数学/统计学知识也要少一些。对于非理工背景的投资者,需要补充基础的高等数学,线性代数,概率论,统计学,最优化理论等等学科的知识,这些内容可以在高校教科书中找到。对于一些新兴的利用机器学习的交易策略,还需要了解一些数据挖掘的知识。但既然是入门,这部分自然不是必要的。

另外,计量经济学的应用尤其广泛。进行策略研究时经常要面对大量的时间序列、面板数据。虽然在实践过程中更加注重策略结果,只要能赚钱的策略就是好策略,但在严谨的计量理论的支持下,回归结果更准确,能更好的刻画数据背后的关系,故往往更容易得到与预期相近的结果。其中,时间序列回归与截面、面板回归的逻辑与假设均有较大区别,且广泛用于刻画及预测金融资产的收益,波动。计量经济学的书籍推荐伍德里奇的《计量经济学导论:现代观点》;时间序列推荐布鲁克斯的《金融计量经济学导论》。

2.编程能力

由于量化策略要处理大规模的数据,并采用复杂的数学算法,故需要利用程序来完成这一过程。大部分面向对象的编程语言,如Python,Java,R等都可以胜任这一工作。我在这里推荐Python,在业界比较主流,其特点主要是包括大量第三方开发的包,如处理数据的Numpy,Pandas,和金融包Talib,和各个平台及其他语言兼容性良好。其中Pandas是美国知名对冲基金AQR开发的数据处理包,非常适合用于金融数据。Python的学习可以通过《利用Python进行数据分析》等书籍进行学习,也可以通过一些网上教程快速入门。在实际应用的过程中,应该多参考各个工具包的API文档。

回测程序主要包括导入数据及初始化账户,每个交易时间点择时条件、调仓逻辑,及回测结果计算,绘制净值曲线等等。某些量化平台封装的回测环境,简化了这一过程,能够方便的对策略进行测试。

3.金融基础知识

量化交易,根本上是金融市场中的行为。虽然该岗位对数学、编程知识有要求,但脱离了其金融本质,就无法设计出优秀的策略。量化投资者需要了解各种金融资产的性质,以及影响其价格的因素。对于股票而言,公司的基本面及财务情况,其所处行业的形势能够从某种程度上反映在其股票价格中,因此投资者应对此有基本了解。这部分可以参考博迪,凯恩,马库斯的《投资学》,以及财务会计,报表相关书籍。此外,中国市场受到人为操控的因素影响较为显著,在实盘操作中,量化投资者在依赖量化策略进行投资决策的同时,一般也会加入一些主观判断,以更及时捕捉市场走势,获得更高的收益。因此,宏观经济,政策形势对金融市场的影响,也是投资者不能忽视的问题。每天看看财经新闻,长久以来可以培养金融直觉。

4.策略研究能力

即是将以上内容综合运用,将投资思想程序化,开发成为有投资价值的策略的能力。起步时,应多参照已有的较为成熟的策略,进行完善复制。策略本身的逻辑可能三言两语就能概括,但在实际执行的过程中的细节不可忽略。众所周知,在回测中表现突出的策略在实盘中不一定有效,但在回测中效果都不好的策略,难以在实盘重有良好的表现。过度拟合,幸存者偏差和使用未来函数都是新手经常会出现的错误,避免这些错误,才能让回测结果更好的接近真实情况。同时,在得到回测结果后,如何对收益进行归因分析,研究持仓股票,风险暴露,并对参数进行优化,也是量化投资者需要解决的问题。

一些经典的投资策略包括多因子策略(Fama-French三因子模型),技术指标择时(MACD,布林带等),动量反转策略,事件驱动策略,统计套利策略等。其中很多策略源于外国学术论文,高质量学术期刊包括Journal of Finance,Journal of Financial Economics等等。同时有一些系统的教学书籍,包括Barra Handbook(多因子圣经),Quantitative Equity Portfolio Management(主要讲解投资组合管理),Quantitative Trading Strategies(主要讲如何构造量化策略)。

5.在实践中学习

策略回测终究是回测。基于过去行情设计的策略,一定能在过去的时间区间内有良好的表现。但同样的历史不一定会重演,随着市场趋势和微观结构的改变,策略在未来的时间可能不会按照预期的方向发展。实盘中还存在报表信息公布延迟,交易摩擦,下单对市场价格影响等问题。故一个交易策略,在经过严谨全面的回测检验后,要在实盘上检验其真正效果。

在接触量化交易初期,了解数学编程,模型搭建中的细节处理都是绕不开的问题。而如今各种技术手段都较为成熟,可供大家使用,一个成功的投资者与众不同的地方一定在于其设计策略的思想,和对市场的把握。设计交易策略应以背后的金融直觉为基础,是我一直坚信的理念。希望各位投资者能够在量化投资领域中找到自己独特的视角,成为下一个西蒙斯!

原文地址:https://www.cnblogs.com/medik/p/11108615.html

时间: 2024-10-06 19:22:08

量化交易入门的相关文章

python量化交易入门学习 之用 Python 实现你的量化交易策略 实现之优矿使用

优矿 https://uqer.io/labs 注册 登录 在“开始研究”页面,新建一个 Notebook,就可以开始用 Python 写你自己的策略. 入门文档 数据  https://uqer.io/data/browse/0/?page=1 DataAPI.EquGet(secID=u"",ticker=u"",equTypeCD=u"A",listStatusCD=u"",field=u"",pan

股票量化交易初学记录------资源集合

Seeking Alpha:http://www.nuclearphynance.com/ Nuclear Phunace:http://seekingalpha.com/ SSRN:http://www.ssrn.com/en/ 一.资料 掘金量化交易入门:http://forum.myquant.cn/t/topic/74 在做系统回测时,一定要量化表示系统性能.定量策略的“业界标准”度量为最大资金回挫与夏普比率. 最大资金回挫:一段时间(通常一年)内账户资金 曲线从波峰至波谷的最大跌幅,常

量化交易投资入门

量化交易,指的是利用数学模型,在金融市场中寻找稳定超额收益的投资手段.量化交易有着挖掘信息能力强,不易受主观情绪影响,下单及时.准确,风险控制严格等特点,能够获得稳健的收益.而其相对于传统主观投资,上手难度也比较大,门槛较高.入门量化交易,主要需要了解如下几方面的知识. 1.数学/统计学知识 既然说到用数学模型,那数学和统计学的知识是必不可少的.由于国内金融市场尚不完备,一些衍生品交易受到限制,所以相较国外市场,能用到的数学/统计学知识也要少一些.对于非理工背景的投资者,需要补充基础的高等数学,

程序员的量化交易之路(1)----规划开篇

其实,一直对量化交易有一定的理解和情节.早在中大读研究生的时候实验室师兄,已经去了中国平安核心投资团队,做高频交易研究的国源师兄的影响,就开始对金融世界产生了浓厚的兴趣.看了丁磊编著的<量化投资--策略与技术>和艾琳.奥尔德里奇的<高频交易>,反复的看,但是都入不了味,现在回过头来想,一个连股都不炒的人怎么可能入味呢.对一些金融的基本概念都不懂. 2013年7月出社会工作后,在10月份确立目标.需要炒股,而且需要一个深入的理解金融的世界.所以确定去考一个证券从业考试,选了证券基础和

量化交易风险指标

量化交易风险指标 风险指标数据有利于对策略进行一个客观的评价,主要风险指标包括: 策略收益(Total Returns) 策略年化收益(Total Annualized Returns) 基准收益(Benchmark Returns) 基准年化收益(Benchmark Annualized Returns) 阿尔法(Alpha):投资中面临着系统性风险(Beta)和非系统性风险(Alpha),Alpha是投资者获得与市场波动无关的回报.比如投资者获得了15%的回报,其基准获得了10%的回报,那么

深度神经网络在量化交易里的应用 之二 -- 用深度网络(LSTM)预测5日收盘价格

    距离上一篇文章,正好两个星期. 这边文章9月15日 16:30 开始写. 可能几个小时后就写完了.用一句粗俗的话说, "当你怀孕的时候,别人都知道你怀孕了, 但不知道你被日了多少回 " ,纪念这两周的熬夜,熬夜.  因为某些原因,文章发布的有点仓促,本来应该再整理实验和代码比较合适.文章都是两个主要作用: 对自己的工作总结, 方便自己回顾和分享给有兴趣的朋友. 不说废话了, 进入正题. 本次的课题很简单, 深度神经网络(AI)来预测5日和22日后的走势. (22日尚未整理, 不

机器学习与量化交易项目班 [从零搭建自动交易系统]

第一课 自动化交易综述知识点1: 课程内容综述,自动化/算法交易介绍,python在自动交易中的应用简介第二课 量化交易系统综述知识点1:回测,自动交易,策略建模,常见平台使用第三课 搭建自己的量化数据库知识点1:软件需求,数据获取方式,数据存储方式实战项目:金融数据的存储,读取第四课 用Python进行金融数据分析知识点1:数据清理与特征选择实战项目:pandas与金融数据分析第五课 策略建模综述知识点1:介绍量化交易中的策略建模流程及主要处理方式第六课 策略建模:基于机器学习的策略建模实战项

Vpai钱包,量化交易,溯源,区块链软件系统开发

Vpai钱包,区块链多币种钱包,交易所各种模式,量化交易,区块链+产品溯源解决方案,区块链各种软件项目开发,像市面上,网易星球,电报圈,inchat,BiYong,币聊,区块链社交应用类型,区块链游戏,交易挖矿交易所,云挖矿系统等等.区块链软件开发公司提供相应的技术开发支持. 贺顾问 QKL17999 搜索V关注,解决你们想做项目的各种问题. 抖音很火,相应的火牛视频诞生后,这种结合区块链+抖音给运营方带来了天然的用户.市场需要什么就去什么,市场还没人去做的领域要抓紧占领. 数字币交易所,币币o

《零起点Python大数据与量化交易》中文PDF+源代码

下载:https://pan.baidu.com/s/1JWmwMFHZV0mYAyAl-HkPyw 更多资料:http://blog.51cto.com/3215120 <零起点Python大数据与量化交易>中文PDF+源代码中文PDF,带目录和书签,655页,文字可以复制粘贴.配套源代码. 本书是国内关于Python大数据与量化交易的原创图书. 如图: 原文地址:http://blog.51cto.com/4820691/2311108