SURF算法

一、原理:

Sift算法的优点是特征稳定,对旋转、尺度变换、亮度保持不变性,对视角变换、噪声也有一定程度的稳定性;缺点是实时性不高,并且对于边缘光滑目标的特征点提取能力较弱。

Surf(Speeded Up Robust Features)改进了特征的提取和描述方式,用一种更为高效的方式完成特征的提取和描述。

二、Surf实现流程如下:

1. 构建Hessian(黑塞矩阵),生成所有的兴趣点,用于特征的提取

黑塞矩阵(Hessian Matrix)是一个多元函数的二阶偏导数构成的方阵,描述了函数的局部曲率。由德国数学家Ludwin Otto Hessian于19世纪提出。

surf构造的金字塔图像与sift有很大不同,Sift采用的是DOG图像,而surf采用的是Hessian矩阵行列式近似值图像。

Hessian矩阵是Surf算法的核心,构建Hessian矩阵的目的是为了生成图像稳定的边缘点(突变点),为下文的特征提取做好基础。

每一个像素点都可以求出一个Hessian矩阵。

Hessian矩阵的判别式为:

当Hessian矩阵的判别式取得局部极大值时,判定当前点是比周围邻域内其他点更亮或更暗的点,由此来定位关键点的位置。

在SURF算法中,图像像素l(x,y)即为函数值f(x,y)。但是由于我们的特征点需要具备尺度无关性,所以在进行Hessian矩阵构造前,需要对其进行高斯滤波,选用二阶标准高斯函数作为滤波器。

通过特定核间的卷积计算二阶偏导数。通过特定核间的卷积计算二阶偏导数,这样便能计算出H矩阵的三个矩阵元素L_xx, L_xy, L_yy从而计算出H矩阵:

由于高斯核是服从正态分布的,从中心点往外,系数越来越低,为了提高运算速度,Surf使用了盒式滤波器来近似替代高斯滤波器,提高运算速度。

盒式滤波器(Boxfilter)对图像的滤波转化成计算图像上不同区域间像素和的加减运算问题,只需要简单几次查找积分图就可以完成。

每个像素的Hessian矩阵行列式的近似值:

在Dxy上乘了一个加权系数0.9,目的是为了平衡因使用盒式滤波器近似所带来的误差:

2. 构建尺度空间

同Sift一样,Surf的尺度空间也是由O组L层组成,不同的是,Sift中下一组图像的尺寸是上一组的一半,同一组间图像尺寸一样,但是所使用的高斯模糊系数逐渐增大;而在Surf中,不同组间图像的尺寸都是一致的,但不同组间使用的盒式滤波器的模板尺寸逐渐增大,同一组间不同层间使用相同尺寸的滤波器,但是滤波器的模糊系数逐渐增大。

3. 特征点定位

特征点的定位过程Surf和Sift保持一致,将经过Hessian矩阵处理的每个像素点与二维图像空间和尺度空间邻域内的26个点进行比较,初步定位出关键点,再经过滤除能量比较弱的关键点以及错误定位的关键点,筛选出最终的稳定的特征点。

4. 特征点主方向分配

Sift特征点方向分配是采用在特征点邻域内统计其梯度直方图,而在Surf中,采用的是统计特征点圆形邻域内的harr小波特征。

在特征点的圆形邻域内,统计60度扇形内所有点的水平、垂直harr小波特征总和,然后扇形以一定间隔进行旋转并再次统计该区域内harr小波特征值之后,最后将值最大的那个扇形的方向作为该特征点的主方向。

5. 生成特征点描述子

在Sift中,是取特征点周围44个区域块,统计每小块内8个梯度方向,用着448=128维向量作为Sift特征的描述子。

Surf算法中,也是在特征点周围取一个44的矩形区域块,但是所取得矩形区域方向是沿着特征点的主方向。每个子区域统计25个像素的水平方向和垂直方向的haar小波特征,这里的水平和垂直方向都是相对主方向而言的。该haar小波特征为水平方向值之后、垂直方向值之后、水平方向绝对值之后以及垂直方向绝对值之和4个方向。

把这4个值作为每个子块区域的特征向量,所以一共有444=64维向量作为Surf特征的描述子,比Sift特征的描述子减少了一半。

6. 特征点匹配

与Sift特征点匹配类似,Surf也是通过计算两个特征点间的欧式距离来确定匹配度,欧氏距离越短,代表两个特征点的匹配度越好。

不同的是Surf还加入了Hessian矩阵迹的判断,如果两个特征点的矩阵迹正负号相同,代表这两个特征具有相同方向上的对比度变化,如果不同,说明这两个特征点的对比度变化方向是相反的,即使欧氏距离为0,也直接予以排除。

时间: 2024-10-19 13:30:45

SURF算法的相关文章

[转]SURF算法解析

SURF算法解析 一.积分图像    积分图像的概念是由Viola和Jones提出的.积分图像中任意一点(i,j)的值为原图像左上角到任意点(i,j)相应的对焦区域的灰度值的总和,其数学公式如图1所示: 那么,当我们想要计算图片一个区域的积分,就只需计算这个区域的四个顶点在积分图像里的值,便可以通过2步加法和2步减法计算得出,其数学公式如下: 二.Hession矩阵探测器1.斑点检测    斑点:与周围有着颜色和灰度差别的区域.    在一个一维信号中,让它和高斯二阶导数进行卷积,也就是拉普拉斯

SURF算法与源码分析、上

如果说SIFT算法中使用DOG对LOG进行了简化,提高了搜索特征点的速度,那么SURF算法则是对DoH的简化与近似.虽然SIFT算法已经被认为是最有效的,也是最常用的特征点提取的算法,但如果不借助于硬件的加速和专用图像处理器的配合,SIFT算法以现有的计算机仍然很难达到实时的程度.对于需要实时运算的场合,如基于特征点匹配的实时目标跟踪系统,每秒要处理8-24帧的图像,需要在毫秒级内完成特征点的搜索.特征矢量生成.特征矢量匹配.目标锁定等工作,这样SIFT算法就很难适应这种需求了.SURF借鉴了S

模式匹配之surf----特征点检测学习_2(surf算法)

在上篇博客特征点检测学习_1(sift算法) 中简单介绍了经典的sift算法,sift算法比较稳定,检测到的特征点也比较多,其最大的确定是计算复杂度较高.后面有不少学者对其进行了改进,其中比较出名的就是本文要介绍的surf算法,surf的中文意思为快速鲁棒特征.本文不是专门介绍surf所有理论(最好的理论是作者的论文)的,只是对surf算法进行了下整理,方便以后查阅. 网上有些文章对surf做了介绍,比如: http://wuzizhang.blog.163.com/blog/static/78

SURF算法与源码分析、下

上一篇文章 SURF算法与源码分析.上 中主要分析的是SURF特征点定位的算法原理与相关OpenCV中的源码分析,这篇文章接着上篇文章对已经定位到的SURF特征点进行特征描述.这一步至关重要,这是SURF特征点匹配的基础.总体来说算法思路和SIFT相似,只是每一步都做了不同程度的近似与简化,提高了效率. 1. SURF特征点方向分配 为了保证特征矢量具有旋转不变性,与SIFT特征一样,需要对每个特征点分配一个主方向.为些,我们需要以特征点为中心,以$6s$($s = 1.2 *L /9$为特征点

opencv中使用 SURF算法匹配的遇到的问题

错误 1 error LNK2019: 无法解析的外部符号 "public: __thiscall cv::SURF::SURF(double,int,int,bool,bool)" ([email protected]@@[email protected][email protected]),该符号在函数 _main 中被引用错误 2 error LNK1120: 1 个无法解析的外部命令 解决方法:缺少函数库.在连接器--输入--附加依赖项里面加上两个库:opencv_nonfre

SURF算法解析

一.积分图像 积分图像的概念是由Viola和Jones提出的.积分图像中任意一点(i,j)的值为原图像左上角到任意点(i,j)相应的对焦区域的灰度值的总和,其数学公式如图1所示: 那么,当我们想要计算图片一个区域的积分,就只需计算这个区域的四个顶点在积分图像里的值,便可以通过2步加法和2步减法计算得出,其数学公式如下: 二.Hession矩阵探测器 1.斑点检测 斑点:与周围有着颜色和灰度差别的区域. 在一个一维信号中,让它和高斯二阶导数进行卷积,也就是拉普拉斯变换,那么在信号的边缘处就会出现过

SIFT/SURF

SIFT/SURF为了实现不同图像中相同场景的匹配,主要步骤: 1.尺度空间的建立: 2.特征点的提取: 3.利用特征点周围邻域的信息生成特征描述子:(以特征点为中心,在周围邻域内统计特征,将特征附加到稳定点上,生成特征描述子) 4.特征点匹配. 如果两幅图像中的物体只是旋转和缩放的关系,加上图像的亮度及对比度的不同,要在这些条件下实现物体之间的匹配,只要找到多于三对物体间的匹配点就可以通过射影几何的理论建立它们的一一对应. 如何找到这样的匹配点呢?SIFT/SURF作者的想法是首先找到图像中的

【OpenCV入门教程之十七】OpenCV重映射 & SURF特征点检测合辑

本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/30974513 作者:毛星云(浅墨)    微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: [email protected] 写作当前博文时配套使用的OpenCV版本: 2.4.9 本篇文章中,我们一起探讨了OpenCV中

【OpenCV新手教程之十八】OpenCV仿射变换 & SURF特征点描写叙述合辑

本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/33320997 作者:毛星云(浅墨)    微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: [email protected] 写作当前博文时配套使用的OpenCV版本号: 2.4.9 本篇文章中.我们一起探讨了OpenCV